DOI QR코드

DOI QR Code

FORMULATION AND CONSTRAINTS ON LATE DECAYING DARK MATTER

  • LAN, NGUYEN Q. (Hanoi National University of Education) ;
  • VINH, NGUYEN A. (Hanoi National University of Education) ;
  • MATHEWS, GRANT J. (Center for Astrophysics, Department of Physics, University of Notre Dame)
  • Received : 2014.11.30
  • Accepted : 2015.06.30
  • Published : 2015.09.30

Abstract

We consider a late decaying dark matter model in which cold dark matter begins to decay into relativistic particles at a recent epoch ($z{\leqslant}1$). A complete set of Boltzmann equations for dark matter and other relevant particles particles is derived, which is necessary to calculate the evolution of the energy density and density perturbations. We show that the large entropy production and associated bulk viscosity from such decays leads to a recently accelerating cosmology consistent with observations. We determine the constraints on the decaying dark matter model with bulk viscosity by using a MCMC method combined with observational data of the CMB and type Ia supernovae.

Keywords

References

  1. Abazajian, K., Fuller, G. M., & Patel, M. 2001, Sterile Neutrino Hot, Warm, and Cold Dark Matter, PhRvD, 64b, 3051a
  2. Amanullah, R., Lidman, C., & Rubin, D., et al., 2010, Spectra and Hubble Space Telescope Light Curves of Six Type Ia Supernovae at 0.511 $!`$ z $!`$ 1.12 and the Union2 Compilation, ApJ, 716, 712 https://doi.org/10.1088/0004-637X/716/1/712
  3. Carroll, S. M., Press, W. H., & Turner, E. L., 1992, The Cosmological Constant, ARA&A, 30, 499 https://doi.org/10.1146/annurev.aa.30.090192.002435
  4. Chikashige, Y., Mohapatra, R. N., & Peccei, R. D., 1980, Spontaneously Broken Lepton Number and Cosmological Constraints on the Neutrino Mass Spectrum, PhRvL, 45, 1926
  5. Hamaguchi, K., Nomura, Y., & Yanagida, T., 1998, Superheavy Dark Matter with Discrete Gauge Symmetries, PhRvD, 58, 3503
  6. Hu, W. & Sugiyama, N. 1996, Small-Scale Cosmological Perturbations: an Analytic Approach, ApJ, 471, 542 https://doi.org/10.1086/177989
  7. Komatsu, E., et al., [WMAP Collaboration], 2011, Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, ApJS, 192, 18 https://doi.org/10.1088/0067-0049/192/2/18
  8. Lewis, A. & Bridle, S., 2002, Cosmological Parameters from CMB and Other Data: A Monte Carlo Approach, PhRvD, 66, 3511
  9. Mangano, G., Miele, G., Pastor, S., & Peloso, M., 2002, A Precision Calculation of the E ective Number of Cosmological Neutrinos, PhLB, 534, 8
  10. Mathews, G. J., Lan, N. Q., & Kolda, C., 2008, Late Decaying Dark Matter, Bulk Viscosity, and the Cosmic Acceleration, PhRvD, 78, 3525
  11. Page, L., et al., 2003, First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Interpretation of the TT and TE Angular Power Spectrum Peaks, ApJS, 148, 233 https://doi.org/10.1086/377224
  12. Weinberg, S. 1971, Entropy Generation and the Survival of Protogalaxies in an Expanding Universe, ApJ, 168, 175 https://doi.org/10.1086/151073
  13. Wilczek, F. 1982, Axions and Family Symmetry Breaking, PhRvL, 49, 1549
  14. Wilson, J. R., Mathews, G. L., & Fuller, G. M., 2007, Bulk Viscosity, Decaying Dark Matter, and the Cosmic Acceleration, PhRvD, 75, 3521
  15. Yuksel, H., Horiuchi, S., Beacom, J. F., & Ando, S., 2007, Neutrino Constraints on the Dark Matter Total Annihilation Cross Section, PhRvD, 76, 3506