• 제목/요약/키워드: dense sand

검색결과 142건 처리시간 0.029초

지진동을 받는 안벽 구조물의 내진 성능 평가 (Evaluation of Seismic Performance of Quay Walls during Earthquakes)

  • 김성렬
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.112-119
    • /
    • 2000
  • the shaking table tests for 5 different model sections are performed to investigate the behaviors of quay walls during earthquakes and to evaluate the seismic performance of quay walls with countermeasures. 5 different model sections describe the cases of dense soil and loose soil in the foundation repectively the case to which gravel backfill was applied and the cases to which light material replacement method and sand compction pile method was applied repectively for sesmic countermeasure methods. Pore water pressures accelerations and deformations in quay walls and grounds are analyzed. As a result the softening of foundation and backfill soils have much influence on the behaviors of quay walls. Also light material replacement method and sand compaction pile method are effective in improving the seismic performance of quay walls.

  • PDF

Numerical Analysis of Peak Uplift Resistance for Pipelines Buried In Sand

  • Kwon, Dae-Hean;Seo, Young-Kyo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권4호
    • /
    • pp.158-164
    • /
    • 2017
  • A pipeline is one of the most important structures for the transportation of fluids such as oil, natural gas, and wastewater. The uplift behavior of pipelines caused by earthquakes and buoyancy is one of the reasons for the failure of pipelines. The objective of this study is to examine the peak uplift resistance using parametric studies with numerical modeling of PLAXIS 3D Tunnel. The effects of burial depth and pipe diameter on the uplift resistance of loose and dense sand were first examined. Subsequently, the effects of the length of geogrid layers and the number of geogrid layers were examined to prevent uplift behavior.

실트질 모래의 액상화 후 반복하중에 의한 동적거동 (Post-liquefaction Behavior under Cyclic Loading of a Silty Sand)

  • 강병희;박근보;서명하
    • 한국지반공학회논문집
    • /
    • 제16권5호
    • /
    • pp.37-43
    • /
    • 2000
  • 보통으로 다져진 실트질 모래(Dr=50%)에 대한 액상화 전후 상태에서의 반복하중에 의한 동적거동을 연구하기 위하여 몇가지의 압밀응력비로서 압밀시킨공시체에 대해서 일련의 일련의 반복삼축시험을 수행하였다. 연구결과로서 압밀응력비가 액상화거동에 미치는 영향을 나타내었으며 또한 액상화 전후의 동적거동을 비교하였다. 그리고 액상화 후의 거동은 선행액상화시의 응력반전여부에 의해서 절대적으로 좌우된다는 사실을 보여주고 있다. 결론적으로 액상화를 경험한 공시체의 액상화저항은 액상화를 경험하지 않은 공시체에 비해서 이방압밀의 경우에는 높고 등방압밀의 경우에는 낮다.

  • PDF

대청도 모래울 사구의 지형 특성과 OSL 연대 (Geomorphological Characteristics and OSL Ages of the Moraeul dune in Daechoengdo Island, South Korea)

  • 최광희
    • 한국지형학회지
    • /
    • 제27권4호
    • /
    • pp.1-11
    • /
    • 2020
  • Coastal dunes play an important role in coastal defense. The Moraeul dune in Daecheongdo Island is representative in this regard. However, there is little knowledge, concerning the morphology, grain size, and formation timing of the dune. This study investigated the geomorphological characteristics of the Moraeul dune using topographic surveys, grain size analyses, and OSL dating. The dune was classified as 'single accreted foredune', which was developed under dense vegetation cover and efficient sand trapping. The dune consisted of fine to medium sand with 1.6Φ of mean grain size, and was covered with pine trees (> 100 years old). The samples from the upper part of the dune yielded quartz OSL ages ranging 0.5 ~ 0.7 ka. Therefore, it is likely that the dune developed at least before the Little Ice Age and became what it is today about one century ago.

우리나라 포화사질지반의 액상화 포텐셜 평가 (구함관계 개발을 중심으로) (Evaluation of Liquefaction Potentional on Saturated Sand Layers in Korea (on the Development of Constitutive Relationships))

  • 도덕현;장병욱
    • 한국지반공학회지:지반
    • /
    • 제6권3호
    • /
    • pp.41-52
    • /
    • 1990
  • To investigate the liquefaction potential of sands, a series of untrained cyclic triaxial compression tests is carried out on the samples of Ottawa, Joomoonjin, Hn river and Hongseung sands. The constitutive equations of sands are derived to explain the mechanical behavior of sands under cyclic stresses, and are applicable to liquefaction analysis. The following results are obtainded in this study. 1. Sands with the lower confining pressure or relative density are to be easily liquefied, and when the amplitude of cyclic stress are large, liquefaction takes places over only a few cycles. 2. Stress ratio, porewater pressure ratio and cyclic shear strains are to be good criteria to evaluate liquefaction potential of sands. 3. Hongseung sands which contains some silty clay shows higher dynamic properties than other sands. 4. The dynamic behaviors of undisturbed Hongseung sand are about same as those of dense sands. It is noted that undisturbed Hongseung sand shows higher liquefaction potential than the samples made by pluviation under same relative density, 5. The constitutive equations of soils under cyclic loads are developed based on the theory of elasto-plasticity, logarithmic stress-strain rela'tionship, non-associated flow rule and the concept of the boundary surface. The derived equations is applicable to predict the behavior of sands under cyclic loads and liquefaction potential with a higher accuracy. 6. Based on results of the study it may be concluded that cracks of the foundations and dislocation of the structures at Hongseung earthquakes(Oct. 7, 1978, Richter scald 5.2) are not brought by the liquefaction process.

  • PDF

Tundish용 Zircon 내화물의 제조에 관한 연구 (Preparation of Zircon Nozzle for the Tundish)

  • 지응업;최상욱
    • 한국세라믹학회지
    • /
    • 제14권2호
    • /
    • pp.88-94
    • /
    • 1977
  • Zircon sand of two different particle distribution with 2 percent of ground pyrophyllite were adoted to prepare the dense specimens of the stopper nozzle for the tundish. The molding pressure of $600kg/cm^2$ brought about the superior properties to those obtained t the pressure of $300kg/cm^2$, and as the firing temperatures were increased from $1, 350^{\circ}C$ to $1, 600^{\circ}C$, the better characteristics resulted. The addition of 2 percent $MgCr_2O_4$ to zircon pyrophyllite batch was more effective in corrosion-resistance to the blast furnace-slag.

  • PDF

Whetzelinia에 의(依)한 콩 균핵병(菌核病) (Soybean Whetzelinia Rot in Korea)

  • 성재모
    • 한국균학회지
    • /
    • 제10권2호
    • /
    • pp.93-94
    • /
    • 1982
  • Soybean Whetzelinia rot caused by Whetzelinia sclerotiorum was observed in Jinju area. The diseased soybean plants showed withering and sudden collapse under field conditions. Diseased parts exhibited numerous black, irregularly-shaped scleratia embedded in dense white cottonly mycelium on tissue and in the pith of diseased stems. A sclerotium in the moist sand produced several apothecia under laboratary condition. The primary inoculum was supposed to originate from overwintered sclerotia of soil and soybean debris.

  • PDF

실내시험 시 재하속도가 미고결 및 고결 모래의 강도에 미치는 영향 (Effect of Shear Rate on Strength of Non-cemented and Cemented Sand in Laboratory Testing)

  • 문홍득;김정숙;우승욱;;박성식
    • 한국지반공학회논문집
    • /
    • 제37권11호
    • /
    • pp.23-36
    • /
    • 2021
  • 본 논문에서는 실내시험 시 재하속도가 미고결 모래의 내부 마찰각 그리고 고결모래의 일축압축강도에 미치는 영향에 대해 연구하였다. 건조상태의 주문진모래를 상대밀도 40%로 느슨하거나, 60%로 중간 정도 및 80%로 조밀한 상태로 제작한 다음 0.32, 0.64, 2.54mm/min의 재하속도로 직접전단시험을 실시하였다. 또한, 주문진모래에 시멘트 8% 및 12%로 다짐한 직경 50mm, 높이 100mm의 고결 공시체를 일축압축시험 시 0.1, 0.5, 1, 5, 10%/min의 재하속도로 압축하였다. 모래의 고결 여부나 정도에 관계없이 재하속도가 증가할수록 내부 마찰각과 일축압축강도는 증가하는 경향을 보였다. 미고결 모래의 경우 재하속도가 증가할수록 최대 4° 까지 내부 마찰각이 증가하였다. 고결 모래의 경우도 일반적으로 재하속도에 따라 일축압축강도가 증가하였으나, 표준 재하속도인 1%/min를 기준으로 증가하는 경향이 감소하였다. 또한, 개별요소법을 이용하여 고결 모래의 재하속도에 따른 균열 발생 및 발달 과정을 분석하였으며, 해석결과 또한 재하속도가 증가함에 따라 강도가 증가하는 경향을 보였으며 강도가 증가할수록 균열이 뚜렷하게 발달하였다.

보도용 연성 샌드 아스팔트 포장의 충격흡수 특성 평가 (Evaluation of Impact Energy Absorption Characteristics of Flexible Sand Asphalt Pavement for Pedestrian Way)

  • 최창정;동배선;김광우;김성운
    • 한국농공학회논문집
    • /
    • 제61권3호
    • /
    • pp.31-41
    • /
    • 2019
  • More than 90% of roadway in the world are paved as asphalt concrete pavement due to its excellent properties compared with other paving materials; excellent riding quality, flexibility, anti-icing property and easy maintenance-ability. In this study, to make best use of the softer property of the asphalt mixture, the flexible sand asphalt mixture (FSAM) was developed for pedestrian ways. The mix design was conducted to prepare FSAM using PG64-22 asphalt, screenings (sand) less than 5mm, crumb rubber, hydrated lime and limestone powder without coarse aggregate. The deformation strength ($S_D$), indirect tensile strength (ITS) and tensile strength ratio (TSR) tests were conducted to make sure durability of FSAM performance. The impact energy absorption and flexibility were measured by drop-boll test and the resilient modulus ($M_R$) test. The impact energy absorption of FSAM was compared with normal asphalt pavement, concrete pavement, stone and concrete block for pedestrian way. As a result of drop-boll test, FSAM showed higher impact energy absorption compared with other paving materials with the range of 18% to 43%. Impact energy absorption of FSAM increased with increasing test temperature from 5 to $40^{\circ}C$. The results of $M_R$ test at $5^{\circ}C$ showed that the flexibility of FSPA was increased further, because the $M_R$ value of the sand asphalt was measured to be 38% lower than normal dense-graded asphalt mixture (WC-1). Therefore, it was concluded that the FSAM could provide a high impact absorbing characteristics, which would improve walking quality of the pedestrian ways.

Response of circular footing on dry dense sand to impact load with different embedment depths

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Earthquakes and Structures
    • /
    • 제14권4호
    • /
    • pp.323-336
    • /
    • 2018
  • Machine foundations with impact loads are common powerful sources of industrial vibrations. These foundations are generally transferring vertical dynamic loads to the soil and generate ground vibrations which may harmfully affect the surrounding structures or buildings. Dynamic effects range from severe trouble of working conditions for some sensitive instruments or devices to visible structural damage. This work includes an experimental study on the behavior of dry dense sand under the action of a single impulsive load. The objective of this research is to predict the dry sand response under impact loads. Emphasis will be made on attenuation of waves induced by impact loads through the soil. The research also includes studying the effect of footing embedment, and footing area on the soil behavior and its dynamic response. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of different soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil in addition to soil pressure gauges. It was concluded that increasing the footing embedment depth results in increase in the amplitude of the force-time history by about 10-30% due to increase in the degree of confinement. This is accompanied by a decrease in the displacement response of the soil by about 40-50% due to increase in the overburden pressure when the embedment depth increased which leads to increasing the stiffness of sandy soil. There is also increase in the natural frequency of the soil-foundation system by about 20-45%. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency. Moreover, the soil density increases with depth because of compaction, which makes the soil behave as a solid medium. Increasing the footing embedment depth results in an increase in the damping ratio by about 50-150% due to the increase of soil density as D/B increases, hence the soil tends to behave as a solid medium which activates both viscous and strain damping.