• Title/Summary/Keyword: demolition construction system

Search Result 67, Processing Time 0.02 seconds

Sustainable SCC with high volume recycled concrete aggregates and SCMs for improved mechanical and environmental performances

  • Zhanggen Guo;Ling Zhou;Qiansen Sun;Zhiwei Gao;Qinglong Miao;Haixia Ding
    • Advances in concrete construction
    • /
    • v.16 no.6
    • /
    • pp.303-316
    • /
    • 2023
  • Using industrial wastes and construction and demolition (C&D) wastes is potentially advantageous for concrete production in terms of sustainability improvement. In this paper, a sustainable Self-Compacting Concrete (SCC) made with industrial wastes and C&D wastes was proposed by considerably replacing natural counterparts with recycled coarse aggregates (RCAs) and supplementary cementitious materials (SCMs) (i.e., Fly ash (FA), ground granulated blast furnace slag (GGBS) and silica fume (SF)). A total of 12 SCC mixes with various RCAs and different combination SCMs were prepared, which comprise binary, ternary and quaternary mixes. The mechanical properties in terms of compressive strength and static elasticity modulus of recycled aggregates (RA-SCC) mixes were determined and analyzed. Microstructural study was implemented to analyze the reason of improvement on mechanical properties. By means of life cycle assessment (LCA) method, the environmental impacts of RA-SCC with various RCAs and SCMs were quantified, analyzed and compared in the system boundary of "cradle-to-gate". In addition, the comparison of LCA results with respect to mechanical properties was conducted. The results demonstrate that the addition of proposed combination SCMs leads to significant improvement in mechanical properties of quaternary RA-SCC mixes with FA, GGBS and SF. Furthermore, quaternary RA-SCC mixes emit lowest environmental burdens without compromising mechanical properties. Thus, using the combination of FA, GGBS and SF as cement substitution to manufacture RA-SCC significantly improves the sustainability of SCC by minimizing the depletion of cement and non-renewable natural resources.

Prediction of Potential Risk Posed by a Military Gunnery Range after Flood Control Reservoir Construction (홍수조절지 건설 후 사격장 주변지역의 위해성예측 사례연구)

  • Ryu, Hye-Rim;Han, Joon-Kyoung;Nam, Kyoung-Phile;Bae, Bum-Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.1
    • /
    • pp.87-96
    • /
    • 2007
  • Risk assessment was carried out in order to improve the remediation and management strategy on a contaminated gunnery site, where a flood control reservoir is under construction nearby. Six chemicals, including explosive chemicals and heavy metals, which were suspected to possess risk to humans by leaching events from the site were the target pollutants for the assessment. A site-specific conceptual site model was constructed based on effective, reasonable exposure pathways to avoid any overestimation of the risk. Also, conservative default values were adapted to prevent underestimation of the risk when site-specific values were not available. The risks of the six contaminants were calculated by API's Decision Support System for Exposure and Risk Assessment with several assumptions. In the crater-formed-area(Ac), the non-carcinogenic risks(i.e., HI values) of TNT(Tri-Nitro-Toluene) and Cd were slightly larger than 1, and for RDX(Royal Demolition Explosives), over 50. The total non-carcinogenic risk of the whole gunnery range calculated to a significantly high value of 62.5. Carcinogenicity of Cd was estimated to be about $10^{-3}$, while that of Pb was about $5\;{\times}\;10^{-4}$, which greatly exceeded the generally acceptable carcinogenic risk level of $10^{-4}{\sim}10^{-6}$. The risk assessment results suggest that an immediate remediation practice for both carcinogens and non-carcinogens are required before the reservoir construction. However, for more accurate risk assessment, more specific estimations on condition shifts due to the construction of the reservoir are required, and more over, the effects of the pollutants to the ecosystem is also necessary to be evaluated.

Development on Reconstruction Cost Model for Decision Making of Bridge Maintenance (교량 유지관리 의사결정 지원을 위한 개축비용 산정모델 개발)

  • Sun, Jong-Wan;Lee, Dong-Yeol;Lee, Min-Jae;Park, Kyung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.533-542
    • /
    • 2016
  • The periodic maintenance of bridges is necessary once they have been constructed and its cost depends on various factors, such as their condition, environmental conditions and so on. To make a decision support system, it is essential to establish a basic reconstruction cost model. In this study, a regression model is suggested for calculating the reconstruction cost for typical cases and influential factors, depending on the type of bridge and its components, by analyzing the basic bridge specifications based on the data of the Bridge Management System (BMS). The details for each case were estimated in consideration of the cost calculation variables. The details for each case were estimated in consideration of the cost calculation variables. The cost model for the new construction of the superstructure, substructure and foundation and the temporary bridge construction and demolition costs were drawn from the regression analysis of the estimation results of typical cases according to the cost calculation variables. The reconstruction costs for different types of bridge were obtained using the cost model and compared with those in the literature. The cost model developed herein is expected to be utilized effectively in maintenance decision making.

An Analytical Study on the Behavior of Slab Structure Considering the Remodeling (리모델링 공사를 고려한 슬래브 구조물의 거동에 관한 해석적 연구)

  • Choi, Hoon;Joo, Hyung-Joong;Lee, Seung-Sik;Yoon, Soon-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.106-112
    • /
    • 2010
  • Due to the improvement and stabilization of the social environment, construction market in the urban region is under shrinking. According, researches to lengthen the service life of the existing building structures are under the way through the remodeling or maintenance of deteriorated structures other than the new constructions. Similar situations are widely discussed in the domestic building construction market and the social importance of the remodeling of the existing building structures is increased. Although the structural stability of the building is uncertain due to the frequent repairing and structural changing, the remodeling works are usually conducted. In general, documents such as drawings and calculations for the design of the deteriorated structure to be remodeled are not kept. Accident at the remodeling site frequently occur because of the lack of thorough understanding of changed situations such as loadings, loading paths, changing of the mechanical properties of material, etc. In this paper, using the finite element analysis method, we investigated the structural behaviors of slab in the remodeling building and the results are applied to remodeling construction, and the appropriateness of the remodeling works are evaluated.

Seismic Performance of Precast Infill Walls with Strain-Hardening Cementitious Composites (변형경화형 시멘트 복합체를 사용한 프리캐스트 끼움벽의 내진성능)

  • Kim, Sun-Woo;Yun, Hyun-Do;Jang, Gwang-Soo;Yun, Yeo-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.327-335
    • /
    • 2009
  • In the seismic region, non-ductile structures often form soft story and exhibit brittle collapse. However, structure demolition and new structure construction strategies have serious problems, as construction waste, environmental pollution and popular complain. And these methods can be uneconomical. Therefore, to satisfy seismic performance, so many seismic retrofit methods have been investigated. There are some retrofit methods as infill walls, steel brace, continuous walls, buttress, wing walls, jacketing of column or beam. Among them, the infilled frames exhibit complex behavior as follows: flexible frames experiment large deflection and rotations at the joints, and infilled shear walls fail mainly in shear at relatively small displacements. Therefore, the combined action of the composite system differs significantly from that of the frame or wall alone. Purpose of research is evaluation on the seismic performance of infill walls, and improvement concept of this paper is use of SHCCs (strain-hardening cementitious composites) to absorb damage energy effectively. The experimental investigation consisted of cyclic loading tests on 1/3-scale models of infill walls. The experimental results, as expected, show that the multiple crack pattern, strength, and energy dissipation capacity are superior for SHCC infill wall due to bridging of fibers and stress redistribution in cement matrix.

A Case Study on CO2 Uptake of Concrete owing to Carbonation (콘크리트 탄산화에 의한 CO2 포집량 평가의 사례연구)

  • Yang, Keun-Hyeok;Kim, Sang-Chel
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.42-48
    • /
    • 2013
  • The present study assessed the amount of $CO_2$ uptake owing to concrete carbonation through a case study for an apartment building with a principal wall system and an office building with Rahmen system under different exposed environments during use phase and recycling application. The $CO_2$ uptake assessment owing to concrete carbonation followed the procedure established by Yang et al. As input data necessary for the case study, actual surveys conducted in 2012 in Korea, which included data about the climate environments, $CO_2$ concentration, lifecycle inventory database, life expectancy of structures, and recycling activity scenario, were used. From the comparisons with the $CO_2$ emissions from concrete production, the $CO_2$ uptake during the lifetime of structures was estimated to be 5.5~5.7% and that during recycling activity after demolition was 10~12%; as a result, the amount of $CO_2$ uptake owing to concrete carbonation can be estimated to be 15.5~17% of the $CO_2$ emissions from concrete production, which roughly corresponds to 18-21% of the $CO_2$emissions from cement production as well.

A Study on Conservation and Management of the Joseon Royal Tomb's System - Focused on Joseon Royal Tombs Under the Eastern District Management Office - (조선왕릉의 능제보존관리에 관한 연구 - 동부지구관리소 산하 조선왕릉을 중심으로 -)

  • Choi, Jong-Hee;Lee, Chang-Hwan;Hwang, Kyu-Man;Kim, Kyu-Yeon
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.3
    • /
    • pp.75-87
    • /
    • 2018
  • The purpose of this study is to investigate conservation and management methods of the Joseon Royal Tombs under the Eastern District Management Office. Through the literature survey, we understood the process of change of Joseon royal tombs, and through field surveys and interviews, we understood the status of the interior and the surrounding area. In this process, topography, land use and flow of human traffic, architecture and stone objects, water system, historical forests, and facilities were set as the main evaluation indicators. Urbanization has damaged the original terrains of Royal Tombs as national roads, buildings and facilities have constructed in the inner and outer area of Joseon Royal Tombs. Construction of underground passage, land purchase, relocation and demolition of the buildings are required for the conservation of the Royal Tombs area, and then it is necessary to recover the original terrain. In the case of land use and pathways, there are many disconnection of the original ritual circulation, they should be maintained to remind the sacred atmosphere of the royal tomb. And It is necessary to collect accurate information on the lost buildings and stoneworks through literature survey and excavation investigation, and that investigations should be lead to the exposure or restoration of the ruins. Historical forests require periodic and ongoing monitoring and management, and it is necessary to establish new entrance area and appropriate facilities following the long-Term conservation and management plan. These plans should be classified into short, medium and long-Term projects according to urgency and securing financial resources with a long perspective to implement continuous and systematic projects.