DOI QR코드

DOI QR Code

콘크리트 탄산화에 의한 CO2 포집량 평가의 사례연구

A Case Study on CO2 Uptake of Concrete owing to Carbonation

  • 양근혁 (경기대학교 플랜트.건축공학과) ;
  • 김상철 (한서대학교 토목공학과)
  • 투고 : 2013.05.14
  • 심사 : 2013.06.21
  • 발행 : 2013.06.30

초록

본 연구에서는 사용단계와 재활용단계에서 다양한 노출조건을 갖는 전단벽시스템의 아파트와 라멘시스템의 사무소 건축물에서 콘크리트 탄산화에 의한 $CO_2$ 포집량 평가에 대한 사례연구를 수행하였다. 콘크리트 탄산화에 의한 $CO_2$ 포집평가는 Yang 등에 의해 제시된 절차를 따랐다. 사례연구에서 필요한 입력정보들(기후환경, $CO_2$ 농도, 생애주기 원단위 데이터베이스, 구조물 기대수명 및 재활용 시나리오)은 2012년 한국의 실제 측정값을 이용하였다. 콘크리트 생산단계에서 배출되는 $CO_2$양과의 비교로부터 구조물의 내구년한 동안 $CO_2$ 포집량은 배출양의 5.5~5.7%로, 재활용기간 동안 $CO_2$ 포집량은 배출양의 10.5~12%로 평가되었다. 결국, 콘크리트 탄산화에 의한 $CO_2$ 포집량은 콘크리트 생산에 의한 $CO_2$ 배출양의 15.5~17%수준으로서, 이는 재료단계의 시멘트로부터 배출되는 $CO_2$ 배출양의 약 18~21%수준이다.

The present study assessed the amount of $CO_2$ uptake owing to concrete carbonation through a case study for an apartment building with a principal wall system and an office building with Rahmen system under different exposed environments during use phase and recycling application. The $CO_2$ uptake assessment owing to concrete carbonation followed the procedure established by Yang et al. As input data necessary for the case study, actual surveys conducted in 2012 in Korea, which included data about the climate environments, $CO_2$ concentration, lifecycle inventory database, life expectancy of structures, and recycling activity scenario, were used. From the comparisons with the $CO_2$ emissions from concrete production, the $CO_2$ uptake during the lifetime of structures was estimated to be 5.5~5.7% and that during recycling activity after demolition was 10~12%; as a result, the amount of $CO_2$ uptake owing to concrete carbonation can be estimated to be 15.5~17% of the $CO_2$ emissions from concrete production, which roughly corresponds to 18-21% of the $CO_2$emissions from cement production as well.

키워드

참고문헌

  1. Cha, S.W. (1999). Modeling of hydration process and analysis of thermal and hygral stresses in hardening concrete, Ph.D thesis, Seoul National University, Korea.
  2. Gajda, J. (2001). Absorption of atmospheric carbon dioxide by portland cement. PCA, R&D, Chicago, USA.
  3. ISO 14040. (2006). Environmental management-lifecycle assessment-principles and framework. International Organization for Standardization, 2nd Ed., Switzerland.
  4. Jung, S.H. (3003). Diffusivity of carbon dioxide and carbonation in concrete through development of gas diffusion measuring system, Ph.D Thesis, Seoul National University, Korea.
  5. Lee, D.H. (2009). USN-based measurement of greenhouse environment and prediction of $CO_2$ emission from soil, Ph.D Thesis, Sungkyunkwan University.
  6. Lee, S.H., Park, W.J., and Lee, H.S. (2013). Lifecycle $CO_2$ assessment method for concrete using $CO_2$ balance and suggestion to decrease $LCCO_2$ of concrete in South-Korean apartment. Energy and Buildings, 58, 93-102. https://doi.org/10.1016/j.enbuild.2012.11.034
  7. Pade, C., and Guimaraes, M. (2007). The $CO_2$ uptake of concrete in a 100 year perspective, Cement and Concrete Research, 37(9), 1348-1356. https://doi.org/10.1016/j.cemconres.2007.06.009
  8. Papadakis, V.G., Vayenas, G.G., and Fardis, M.N. (1991). Fundamental modeling and experimental investigation of concrete carbonation, ACI Materials Journal, 88(4), 363-373.
  9. Yang, K.H., Seo, E.A., and Tae, S.H. (2013 a). Evaluation of $CO_2$ uptake of concrete owing to carbonation, Cement and Concrete Research, Under Review for Publication.
  10. Yang, K.H., Song, J.K., and Song, K.I. (2013 b). Assessment of $CO_2$ reduction of alkali-activated concrete. Journal of Cleaner Production, 39(1), 265-272. https://doi.org/10.1016/j.jclepro.2012.08.001