• Title/Summary/Keyword: demand parameter

Search Result 264, Processing Time 0.025 seconds

Modeling of High-speed 3-Disional Embedded Inductors (고속 3차원 매립 인덕터에 대한 모델링)

  • 이서구;최종성;윤일구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.139-142
    • /
    • 2001
  • As microeletronics technology continues to progress, there is also a continuous demand on highly integration and miniaturization of systems. For example, it is desirable to package several integrated circuits together in multilayer structure, such as multichip modules, to achieve higher levels of compactness and higher performance. Passive components (i.e., capacitors, resistors, and inductors) are very important for many MCM applications. In addition, the low-temperature co-fired ceramic (LTCC) process has considerable potential for embedding passive components in a small area at a low cost. In this paper, we investigate a method of statistically modeling integrated passive devices from just a small number of test structures. A set of LTCC inductors is fabricated and their scattering parameters (5-parameters) are measured for a range of frequencies from 50MHz to 5GHz. An accurate model for each test structure is obtained by using a building block based modeling methodology and circuit parameter optimization using the HSPICE circuit simulator.

  • PDF

A Determination of the Optimal Blood-Issuing Polices (최적 혈액 유출 정책의 결정)

  • 이상완;김재연
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.13 no.21
    • /
    • pp.133-141
    • /
    • 1990
  • Human blood is a perishable product : it has a legal lifetime of 21 days from collection, during which it can be used for transfusion to a Patient of the same type, and after which it has to be discarded. Therefore, blood must be supplied safely and effectively because it is one of the medical resources which keep humanlife. In this study, the effects of blood issuing policies on average inventory levels and average age of blood at transfusion are determined by simulation applied the theory of absorbing Markov chains. And as a practical study, the daily demand distribution of blood is estimated by using the data of B General Hospital. The distribution estimated follows poisson distribution and the estimator of parameter estimated from the poisson distribution is 0.762. Simulation is done by using the parameter. The most important problem when control blood is the amount of outdata. So we compared random policy with Modified LIFO and Modified FIFO by using outdata. As a results it is shown that Modified LIFO and Modified FIFO by using outdata. As a results it Is shown that Modified LIFO and Modified FIFO present better issuing policy than Random Policy.

  • PDF

Power-aware Ad hoc On-Demand Distance Vector Routing for prolonging network lifetime of MANETs

  • Hoang, Xuan-Tung;Ahn, So-Yeon;Lee, Young-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11b
    • /
    • pp.1317-1320
    • /
    • 2002
  • We present in this paper a new version of AODV that incorporates with "Minimizing Maximum node cost" by formulating that metric as a cost function of residual energy of nodes. An additional parameter is added to the cost function to consider the routing performance along with power-efficiency. The motivation of adding that new parameter is originated from the trace off between power-saving behaviors and routing performance.

  • PDF

Optimum design of PV system used by parameter design method (파라미터 설계방식을 이용한 PV시스템의 최적설계)

  • Jeong, B.H.;Choi, Y.O.;Choi, M.H.;Lee, K.Y.;Baek, H.L.;Cho, G.B.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.64-66
    • /
    • 2007
  • Photovoltaic power systems convert sunlight directly into electricity. A residential PV power system enables a homeowner to generate some or all of their daily electrical energy demand on their own roof, exchanging daytime excess power for future energy needs In this paper, It was suggested that new design method for PV system installation for the purpose of system efficiency improvement. and according to loss parameter compensation method, designed for the PV system and investigated through the simulation practically.

  • PDF

Modeling of 3-D Embedded Inductors Fabricated in LTCC Process (저온 동시소성 공정으로 제작된 3차원 매립 인덕터 모델링)

  • 이서구;최종성;윤일구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.344-348
    • /
    • 2002
  • As microelectronics technology continues to progress, there is also a continuous demand on highly integration and miniaturization of systems. For example, it is desirable to package several integrated circuits together in multilayer structure, such as multichip modules, to achieve higher levels of compactness and higher performance. Passive components (i.e., capacitors, resistors, and inductors) are very important fort many MCM applications. In addition, the low-temperature co-fired ceramic (LTCC) process has considerable potential for embedding passive components in a small area at a low cost. In this paper, we investigate a method of statistically modeling integrated passive devices from just a small number of test structures. A set of LTCC inductors is fabricated and their scattering parameters (s-parameters) are measured for a range of frequencies from 50MHz to 5GHz. An accurate model for each test structure is obtained by using a building block based modeling methodology and circuit parameter optimization using the HSPICE circuit simulator.

Strain demand prediction method for buried X80 steel pipelines crossing oblique-reverse faults

  • Liu, Xiaoben;Zhang, Hong;Gu, Xiaoting;Chen, Yanfei;Xia, Mengying;Wu, Kai
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.321-332
    • /
    • 2017
  • The reverse fault is a dangerous geological hazard faced by buried steel pipelines. Permanent ground deformation along the fault trace will induce large compressive strain leading to buckling failure of the pipe. A hybrid pipe-shell element based numerical model programed by INP code supported by ABAQUS solver was proposed in this study to explore the strain performance of buried X80 steel pipeline under reverse fault displacement. Accuracy of the numerical model was validated by previous full scale experimental results. Based on this model, parametric analysis was conducted to study the effects of four main kinds of parameters, e.g., pipe parameters, fault parameters, load parameter and soil property parameters, on the strain demand. Based on 2340 peak strain results of various combinations of design parameters, a semi-empirical model for strain demand prediction of X80 pipeline at reverse fault crossings was proposed. In general, reverse faults encountered by pipelines are involved in 3D oblique reverse faults, which can be considered as a combination of reverse fault and strike-slip fault. So a compressive strain demand estimation procedure for X80 pipeline crossing oblique-reverse faults was proposed by combining the presented semi-empirical model and the previous one for compression strike-slip fault (Liu 2016). Accuracy and efficiency of this proposed method was validated by fifteen design cases faced by the Second West to East Gas pipeline. The proposed method can be directly applied to the strain based design of X80 steel pipeline crossing oblique-reverse faults, with much higher efficiency than common numerical models.

Multi-Parameter Based Scheduling for Multi-user MIMO Systems

  • Chanthirasekaran, K.;Bhagyaveni, M.A.;Parvathy, L. Rama
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2406-2412
    • /
    • 2015
  • Multi-user multi-input multi-output (MU-MIMO) system has attracted the 4th generation wireless network as one of core technique for performance enrichment. In this system rate control is a challenging problem and another problem is optimization. Proper scheduling can resolve these problems by deciding which set of user and at which rate the users send their data. This paper proposes a new multi-parameter based scheduling (MPS) for downlink multi-user multiple-input multiple-output (MU-MIMO) system under space-time block coding (STBC) transmissions. Goal of this MPS scheme is to offer improved link level performance in terms of a low average bit error rate (BER), high packet delivery ratio (PDR) with improved resource utilization and service fairness among the user. This scheme allows the set of users to send data based on their channel quality and their demand rates. Simulation compares the MPS performance with other scheduling scheme such as fair scheduling (FS), normalized priority scheduling (NPS) and threshold based fair scheduling (TFS). The results obtained prove that MPS has significant improvement in average BER performance with improved resource utilization and fairness as compared to the other scheduling scheme.

Seven-Parameter Log Linear Model for Estimating Constituent Loads in Nakdong River (7변수 대수선형모형을 이용한 낙동강 오염부하량 추정)

  • Lee, A-Yeon;Choi, Dae-Gyu;Kim, Sang-Dan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1400-1404
    • /
    • 2010
  • In this study the flow duration curves and load duration curves for Nakdong river basin are analyzed. The TANK model is used as s hydrologic simulation model whose parameters are estimated from 8-days intervals flow data measured by Nakdong River Water Environment Laboratory. also in this study a Minimum Variance Unbiased Estimator(MVUE) is confirmed that it provides satisfactory load estimate. The Seven-Parameter Log Linear Model for estimating Total Organic Carbon(TOC) and Biochemical Oxygen Demand(BOD) loads in Nakdong river using a MVUE.

  • PDF

Parametric identification of the Bouc-Wen model by a modified genetic algorithm: Application to evaluation of metallic dampers

  • Shu, Ganping;Li, Zongjing
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.397-407
    • /
    • 2017
  • With the growing demand for metallic dampers in engineering practice, it is urgent to establish a reasonable approach to evaluating the mechanical performance of metallic dampers under seismic excitations. This paper introduces an effective method for parameter identification of the modified Bouc-Wen model and its application to evaluating the fatigue performance of metallic dampers (MDs). The modified Bouc-Wen model which eliminates the redundant parameter is used to describe the hysteresis behavior of MDs. Relations between the parameters of the modified Bouc-Wen model and the mechanical performance parameters of MDs are studied first. A modified Genetic Algorithm using real-integer hybrid coding with relative fitness as well as adaptive crossover and mutation rates (called RFAGA) is then proposed to identify the parameters of the modified Bouc-Wen model. A reliable approach to evaluating the fatigue performance of the MDs with respect to the Chinese Code for Seismic Design of Buildings (GB 50011-2010) is finally proposed based on the research results. Experimental data are employed to demonstrate the process and verify the effectiveness of the proposed approach. It is shown that the RFAGA is able to converge quickly in the identification process, and the simulation curves based on the identification results fit well with the experimental hysteresis curves. Furthermore, the proposed approach is shown to be a useful tool for evaluating the fatigue performance of MDs with respect to the Chinese Code for Seismic Design of Buildings (GB 50011-2010).

Gaussian noise addition approaches for ensemble optimal interpolation implementation in a distributed hydrological model

  • Manoj Khaniya;Yasuto Tachikawa;Kodai Yamamoto;Takahiro Sayama;Sunmin Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.25-25
    • /
    • 2023
  • The ensemble optimal interpolation (EnOI) scheme is a sub-optimal alternative to the ensemble Kalman filter (EnKF) with a reduced computational demand making it potentially more suitable for operational applications. Since only one model is integrated forward instead of an ensemble of model realizations, online estimation of the background error covariance matrix is not possible in the EnOI scheme. In this study, we investigate two Gaussian noise based ensemble generation strategies to produce dynamic covariance matrices for assimilation of water level observations into a distributed hydrological model. In the first approach, spatially correlated noise, sampled from a normal distribution with a fixed fractional error parameter (which controls its standard deviation), is added to the model forecast state vector to prepare the ensembles. In the second method, we use an adaptive error estimation technique based on the innovation diagnostics to estimate this error parameter within the assimilation framework. The results from a real and a set of synthetic experiments indicate that the EnOI scheme can provide better results when an optimal EnKF is not identified, but performs worse than the ensemble filter when the true error characteristics are known. Furthermore, while the adaptive approach is able to reduce the sensitivity to the fractional error parameter affecting the first (non-adaptive) approach, results are usually worse at ungauged locations with the former.

  • PDF