• 제목/요약/키워드: delta-doping

검색결과 91건 처리시간 0.023초

Threshold Voltage Control of a-Si TFT by Delta Doping of Phosphorous

  • Soh, Hoe-Sup;Kim, Cheol-Se;Kim, Eung-Do
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1165-1167
    • /
    • 2007
  • Delta doping method can separate the threshold voltage control region from the charge transport region in a-Si TFT, whereby the threshold voltage of a TFT could be modified. Threshold voltage could be changed by delta doping, while field effect mobility was estimated to be 80% of that of standard TFT.

  • PDF

비 중심 Si δ-doping 층을 갖는 GaAs-AlxGa1-x 양자우물에서 전계에 따른 전자 분포 (Electron Distribution in the GaAs-AlxGa1-x Quantum Well with the Si δ-doping Layer in a Non-central Position under the External Electric Field)

  • 최준영;전상국
    • 한국전기전자재료학회논문지
    • /
    • 제20권1호
    • /
    • pp.14-18
    • /
    • 2007
  • The electric property in the $GaAs-Al_{x}Ga_{1-x}$ quantum well with the Si ${\delta}-doping$ layer in a non-central position is studied through the effect of the electric field intensity on the electron distribution. The finite difference method is used for the calculation of the subband energy level and its wavefunction. In order to account for the change of the potential energy due to the charged particles, the self consistent method is employed. As the Si ${\delta}-doping$ layer becomes closer to the heterojunction interface, the electrons less affected by Coulomb scattering are greatly increased under the external electric field. Therefore, the high speed device is suggested due to the fact that the high mobility electrons can be increased by positioning the ${\delta}-doping$ layer in the quantum well and by applying the electric field intensity.

Inclusion of Silicon Delta-doped Two-dimensional Electron Gas Layer on Multi-quantum Well Nano-structures of Blue Light Emitting Diodes

  • Kim, Keun-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제5권5호
    • /
    • pp.173-179
    • /
    • 2004
  • The influence of heavily Si impurity doping in the GaN barrier of InGaN/GaN multi-quantum well structures of blue light emitting diodes were investigated by growing samples in metal-organic chemical vapor deposition. The delta-doped sample was compared to the sample with the undoped barrier. The delta-doped sample shows the tunneling behavior and forms the energy level of 0.32 eV for tunneling and the photoemission of the 450-nm band. The photo-luminescence shows the blue-shifted broad band of the radiative transition due to the inclusion of Si delta-doped layer indicating that the delta doping effect acts to form the higher energy level than that of quantum well. The dislocation may provide the carrier tunneling channel and plays as a source of acceptor. During the tunneling of hot carrier, there was no light emission.

저온 변조 성장 기법을 이용하여 Sb가 ${\delta}$ 도핑된 다층 구조의 Si 분자선 박막 성장과 특성 분석 (Molecular beam epitaxial growth and characterization of Sb .delta.-doped Si layers using substrate temperature modulation technique)

  • Le, Chan ho
    • 전자공학회논문지A
    • /
    • 제32A권12호
    • /
    • pp.142-148
    • /
    • 1995
  • Sb ${\delta}$-doped Si layers were grown by Si MBE (Molecular Beam Epitaxy) system using substrate temperature modulation technique. The Si substrate temperatures were modulated between 350$^{\circ}C$ and 600$^{\circ}C$. The doping profile was as narrow as 41$\AA$ and the doping concentration of up to 3.5${\times}10^{20}cm^{3}$ was obtained. The film quality was as good as bulk material as verified by RHEED (Reflected High Energy Electron Diffraction), SRP (Spreading Resistance Profiling) and Hall measurement. Since the film quality is not degraded after the growth a Sb ${\delta}$-doped Si layer, the ${\delta}$-doped layers can be repeated as many times as we want. The doping technique is useful for many Si devices including small scale devices and those which utilize quantum mechanical effects.

  • PDF

N- and P-doping of Transition Metal Dichalcogenide (TMD) using Artificially Designed DNA with Lanthanide and Metal Ions

  • Kang, Dong-Ho;Park, Jin-Hong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.292-292
    • /
    • 2016
  • Transition metal dichalcogenides (TMDs) with a two-dimensional layered structure have been considered highly promising materials for next-generation flexible, wearable, stretchable and transparent devices due to their unique physical, electrical and optical properties. Recent studies on TMD devices have focused on developing a suitable doping technique because precise control of the threshold voltage ($V_{TH}$) and the number of tightly-bound trions are required to achieve high performance electronic and optoelectronic devices, respectively. In particular, it is critical to develop an ultra-low level doping technique for the proper design and optimization of TMD-based devices because high level doping (about $10^{12}cm^{-2}$) causes TMD to act as a near-metallic layer. However, it is difficult to apply an ion implantation technique to TMD materials due to crystal damage that occurs during the implantation process. Although safe doping techniques have recently been developed, most of the previous TMD doping techniques presented very high doping levels of ${\sim}10^{12}cm^{-2}$. Recently, low-level n- and p-doping of TMD materials was achieved using cesium carbonate ($Cs_2CO_3$), octadecyltrichlorosilane (OTS), and M-DNA, but further studies are needed to reduce the doping level down to an intrinsic level. Here, we propose a novel DNA-based doping method on $MoS_2$ and $WSe_2$ films, which enables ultra-low n- and p-doping control and allows for proper adjustments in device performance. This is achieved by selecting and/or combining different types of divalent metal and trivalent lanthanide (Ln) ions on DNA nanostructures. The available n-doping range (${\Delta}n$) on the $MoS_2$ by Ln-DNA (DNA functionalized by trivalent Ln ions) is between $6{\times}10^9cm^{-2}$ and $2.6{\times}10^{10}cm^{-2}$, which is even lower than that provided by pristine DNA (${\sim}6.4{\times}10^{10}cm^{-2}$). The p-doping change (${\Delta}p$) on $WSe_2$ by Ln-DNA is adjusted between $-1.0{\times}10^{10}cm^{-2}$ and $-2.4{\times}10^{10}cm^{-2}$. In the case of Co-DNA (DNA functionalized by both divalent metal and trivalent Ln ions) doping where $Eu^{3+}$ or $Gd^{3+}$ ions were incorporated, a light p-doping phenomenon is observed on $MoS_2$ and $WSe_2$ (respectively, negative ${\Delta}n$ below $-9{\times}10^9cm^{-2}$ and positive ${\Delta}p$ above $1.4{\times}10^{10}cm^{-2}$) because the added $Cu^{2+}$ ions probably reduce the strength of negative charges in Ln-DNA. However, a light n-doping phenomenon (positive ${\Delta}n$ above $10^{10}cm^{-2}$ and negative ${\Delta}p$ below $-1.1{\times}10^{10}cm^{-2}$) occurs in the TMD devices doped by Co-DNA with $Tb^{3+}$ or $Er^{3+}$ ions. A significant (factor of ~5) increase in field-effect mobility is also observed on the $MoS_2$ and $WSe_2$ devices, which are, respectively, doped by $Tb^{3+}$-based Co-DNA (n-doping) and $Gd^{3+}$-based Co-DNA (p-doping), due to the reduction of effective electron and hole barrier heights after the doping. In terms of optoelectronic device performance (photoresponsivity and detectivity), the $Tb^{3+}$ or $Er^{3+}$-Co-DNA (n-doping) and the $Eu^{3+}$ or $Gd^{3+}$-Co-DNA (p-doping) improve the $MoS_2$ and $WSe_2$ photodetectors, respectively.

  • PDF

Effect of Calcium Doping in Low Angle Grain Boundaries of $YBa_2Cu_3O_{7-\delta}$ on Textured Metal Substrates

  • Kang, B.W.;A. Goyal;F.A. List;D.K. Christen;H. R. Kerchner;S. Sathyamurthy;Lee, D.F.;Martin, P.M.;Koreger, D.M.
    • Progress in Superconductivity
    • /
    • 제4권1호
    • /
    • pp.10-13
    • /
    • 2002
  • We report the effect of Ca doping in $YBa_2Cu_3O_{7-\delta}$ (YBCO) thin films grown on the Rolling- Assisted, Biaxially Textured Substrates (RABiTS) with the architecture of $CeO_2/YSZ/CeO_2/Ni$. Critical currents of bilayer and trilayer structures of $YBCO/Y_{0.7}Ca_{0.3}Ba_2Cu_3O_{7-\delta}$/(YCaBCO) as well as undoped YBCO for comparison have been measured in a wide range of temperatures and fields. For $6-8^{\circ}$ grain boundaries, 30% Ca-doping in bilayer structure enhances $J_c$ as high as 35%. The enhancement is larger at low temperatures and at magnetic fields. On the other hand, 30% Ca-doping in trilayer structure reduces $J_c$ as high as 60%. Combined with slightly lower $T_c$, this indicates that Ca is overdoped in this structure and degrades GBs.

  • PDF

이중 $\delta$ 도핑층을 이용한 Si 채널 MESFET의 성능 향상에 관한 연구 (Performance enhancement of Si channel MESFET using double $\delta$-doped layers)

  • 이찬호;김동명
    • 전자공학회논문지D
    • /
    • 제34D권12호
    • /
    • pp.69-75
    • /
    • 1997
  • A Si-channle MESFET using .delta.-doped layers was designed and the considerable enhancement of the current driving capability of the device was observed by simulation. The channel consists of double .delta.-doped layers separated by a low-doped spacer. Cariers are spilt from the .delta.-doped layers and are accumulated in the spacer. The saturation current is enhanced by the contribution of the carriers in the spacer. Among the design parameters that affect the peformance of the device, the thickness of the spacer and the ratio of the doping concentrations of the two .delta.-doped layers were studied. The spacer thickenss of 300~500.angs. and the doping ratio of 3~4 were shown to be the optimized values. The saturation current was observed to be increased by 75% compared with a bulk-channel MESFET. The performances of transconductance, output resistance, and subthreshold swing were also enhanced.

  • PDF

Mg Delta-Doping Effect on a Deep Hole Center Related to Electrical Activation of a p-Type GaN Thin Film

  • Park, Hyo-Yeol;Jeon, Kyoung-Nam;Kim, Keun-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권1호
    • /
    • pp.37-41
    • /
    • 2010
  • The authors investigated the photoluminescence (PL) and the electron paramagnetic resonance (EPR) from an magnesium (Mg)-doped GaN thin film with a delta-doped layer. The regularly doped sample shows a PL peak at 2.776 eV for the as-grown sample, and the peak shifts to 2.904 eV and increases in intensity for the annealed sample. The delta-doped sample also shows the same PL peak as does the regularly doped sample. However, only the annealed delta-doped layer shows a sharp EPR with a small isotropic Lande g-factor, $g_{II}$, of 2.029. This resonance is attributed to the delta-doped layer, which forms a hole-bound Mg-N atomic structure instead of the $Mg_{Ga}-V_N$ defect complex, indicating that the delta-doped sample was not optically activated to form PL centers but was instead electrically activated to form a hole-bound state.

산소 결핍된 TiO2-δ:Ni 박박의 자기적 성질 연구 (Study on Magnetic Properties of TiO2-δ:Ni Thin Films)

  • 박영란;김광주;김철성
    • 한국자기학회지
    • /
    • 제16권3호
    • /
    • pp.168-172
    • /
    • 2006
  • 졸-겔(sol-gel) 방법을 이용하여 제작된 산소결핍(oxygen vacancy)들을 내포하는 Ni 도핑된 루타일(rutile) 구조의 $TiO_{2-{\delta}}$ 박막들에 대하여 그 자기적 성질 및 관련된 전자구조적 성질에 대하여 조사분석 하였다. $TiO_{2-{\delta}}$:Ni 박막들에서 상온 강자성이 관측되었으며 Ni 도핑량이 증가할수록 포화 자화량($M_s$)이 점차 감소하여 6 at% 이상에서 일정한 값으로 유지되었다. 이와 같은 Ni 도핑량 6 at% 이하에서의 강자성 현상은 산소결핍 자리에 속박된 전자를 매개로 그 주위에 존재하는 불순물 이온들의 자기 능률들이 강자성 정렬을 이루게 되는 자기 폴라론(magnetic polaron)의 형성에 의한 것으로 해석된다. 소량의 Ni 도핑 시 각 이온당 최대 $3.7{\mu}_B/Ni$의 큰 $M_s$ 값이 나타났으며 6 at% 이상에서의 일정한 $M_s$ 값은 Ni cluster 형성에 의한 것으로 해석된다. 이와 같은 Ni cluster의 존재는 시료들에 대한 Hall 측정 결과 나타난 Ni 도핑량 증가에 따르는 p-n 전도성 전이를 설명하여 줄 수 있다.

산소 결핍된 TiO2-δ 박막의 철 도핑에 의한 전기적, 자기적 특성 변화 (Variation of Electronic and Magnetic: Properties in Oxygen-deficient TiO2-δ Thin Films by Fe Doping)

  • 박영란;김광주;박재윤;안근영;김철성
    • 한국자기학회지
    • /
    • 제16권1호
    • /
    • pp.45-50
    • /
    • 2006
  • 졸-겔(sol-gel)방법으로 제작된 산소 결핍된 anatase 및 rutile구조의 $TiO_{2-\delta}$ 박막에 대하여 철(Fe)도핑에 의하여 생겨나는 전기적, 자기적 특성의 변화를 조사분석 하였다. 진동 시료 자화율(vibrating sample magnetometry; VSM)과 뫼스바우어 분광(conversion electron Mossbauer spectroscopy, CEMS) 측정을 통하여 Fe 도핑된 anatase 및 rutile $TiO_{2-\delta}$ 박막들에서 모두 상온에서 강자성(ferromagnetism)특성이 나타남이 관측되었다. VSM측정 결과 같은 양의 Fe도핑에 대하여 anatase 시료는 rutile 시료보다 더 큰 자기모멘트 값을 나타내었고 CEMS측정으로부터 팔면체 $Ti^{4+}$자리에 치환된 $Fe^{3+}$이온이 시료가 나타내는 강자성 특성에 주로 기여하는 것으로 해석된다. 홀 효과(Hall effect)측정 결과 anatase $TiO_{2-\delta}:Fe$ 박막은 상온에서 p-type특성을 보였으나 관측된 강자성은 he]e carrier 농도와는 무관한 것으로 해석된다. $TiO_{2-\delta}:Fe$ 박막에서 관측된 강자성 특성은 산소결핍자리(oxygen vacancy)에 갇힌 전자를 매개로 하여 이웃한 두 $Fe^{3+}$ 이온들 간에 존재하게 되는 직접적인 강자성 결합(direct ferromagnetic coupling)에 기인한 것으로 해석될 수 있다.