• Title/Summary/Keyword: delta shock wave

Search Result 6, Processing Time 0.019 seconds

Weak Normal Shock Wave/Turbulent Boundary Layer Interaction in a Supersonic Nozzle(1st Report, Time-Mean Flow Characteristics) (초음속 노즐에서의 약한 수직충격파와 난류경계층의 간섭(제1편, 시간적평균 흐름의 특성))

  • Hong, Jong-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.115-124
    • /
    • 1999
  • The interaction of weak normal shock wave with turbulent boundary layer in a supersonic nozzle was investigated experimentally by wall static pressure measurements and by schlieren optical observations. The lime-mean flow in the interaction region was classified into four patterns according to the ratio of the pressure $p_k$ at the first kink point in the pressure distribution of the interaction region to the pressure $p_1$ just upstream of the shock. It is shown for any flow pattern that the wall static pressure rise near the shock foot can be described by the "free interaction" which is defined by Chapman et al. The ratio of the triple point height $h_t$ of the bifurcated shock to the undisturbed boundary layer thickness ${\delta}_1$ upstream of the interaction increases with the upstream Mach number $M_1$, and for a fixed $M_1$, the normalized triple point height $h_t/{\delta}_1$ decreases with increasing ${\delta}_1/h$, where h is the duct half-height.

  • PDF

CONSTRUCTION OF THE 2D RIEMANN SOLUTIONS FOR A NONSTRICTLY HYPERBOLIC CONSERVATION LAW

  • Sun, Meina
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.201-216
    • /
    • 2013
  • In this note, we consider the Riemann problem for a two-dimensional nonstrictly hyperbolic system of conservation laws. Without the restriction that each jump of the initial data projects one planar elementary wave, six topologically distinct solutions are constructed by applying the generalized characteristic analysis method, in which the delta shock waves and the vacuum states appear. Moreover we demonstrate that the nature of our solutions is identical with that of solutions to the corresponding one-dimensional Cauchy problem, which provides a verification that our construction produces the correct global solutions.

THE ION ACOUSTIC SOLITARY WAVES AND DOUBLE LAYERS IN THE SOLAR WIND PLASMA

  • Choi C.R.;Lee D.Y.;Kim Yong-Gi
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.209-216
    • /
    • 2006
  • Ion acoustic solitary wave in a plasma consisting of electrons and ions with an external magnetic field is reinvestigated using the Sagdeev's potential method. Although the Sagdeev potential has a singularity for n < 1, where n is the ion number density, we obtain new solitary wave solutions by expanding the Sagdeev potential up to ${\delta}n^4$ near n = 1. They are compressiv (rarefactive) waves and shock type solitary waves. These waves can exist all together as a superposed wave which may be used to explain what would be observed in the solar wind plasma. We compared our theoretical results with the data of the Freja satellite in the study of Wu et al. (1996). Also it is shown that these solitary waves propagate with a subsonic speed.

Numerical Study on the Effect of Non-Equilibrium Condensation on Drag Divergence Mach Number in a Transonic Moist Air Flow (천음속 익형 유동에서 비평형 응축이 Drag Divergence Mach Number에 미치는 영향에 관한 수치 해석적 연구)

  • Choi, Seung Min;Kang, Hui Bo;Kwon, Young Doo;Kwon, Soon Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.785-792
    • /
    • 2016
  • In the present study, the effects of non-equilibrium condensation on the drag divergence Mach number with the angle of attack in a transonic 2D moist air flow of NACA0012 are investigated using the TVD finite difference scheme. For the same ${\alpha}$, the maximum upstream Mach number of the shock wave, Mmax, and the size of supersonic bubble decrease with the increase in ${\Phi}_0$. For the same $M_{\infty}$, ${\Phi}_0$, and $T_0$, the length of the non-equilibrium condensation zone ${\Delta}_z$ decreases with increasing ${\Phi}_0$. On the other hand, because of the attenuating effect of non-equilibrium condensation on wave drag, which is related to the interaction between the shock wave and the boundary layer, the drag coefficient $C_D$ decreases with an increase in ${\Phi}_0$ for the same $M_{\infty}$ and ${\alpha}$. For the same ${\alpha}$, $M_D$ increases with increasing ${\Phi}_0$, while $M_D$ decreases with an increase in ${\alpha}$.

Numerical Simulation of Dam Break Flow using EFDC Model and Parameter Sensitivity Analysis (EFDC 모형을 이용한 댐 붕괴류 수치모의 및 매개변수 민감도 분석)

  • Jang, Chul;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.143-149
    • /
    • 2016
  • In this study, a series of numerical simulation of dam break flow was conducted using EFDC model, and input conditions including cell size, time step, and turbulent eddy viscosity were considered to analyze parameter sensitivity. In case of coarse mesh layout, the propagated length of the shock wave front was ${\Delta}_x$ longer than that of other mesh layouts, and the velocity results showed jagged edge, which can be cured by applying fine grid mesh. Turbulent eddy viscosity influenced magnitude of the maximum velocity passing through gate up to 20% and the cell Peclet number less than 2.0 ensured no numerical oscillations.

Velocity profile measurement of supersonic boundary layer over a flat plate using the PIV technique (PIV 기법을 이용한 초음속 평판 경계층의 속도 분포 측정)

  • Lee, Hyuk;Kim, Young Ju;Byun, Yung Hwan;Park, Soo Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.477-483
    • /
    • 2016
  • Velocity profiles of laminar, transition and turbulent boundary layers were investigated by using Particle Image Velocimetry(PIV) measurements on the flat plate at Mach 2.96. The Schlieren visualization and PIV measurements are also used to confirm whether the oblique shock wave generated from the leading edge affects the flow field over the flat plate. The laminar velocity profile measured from the experiment was well matched with the compressible Blasius solution. The velocity profile of the transition boundary layer was well correlated with the theoretical turbulent velocity profile from near the wall and the transition began from Re = $1.41{\times}106$. For the turbulent boundary layer, considering compressibility effects, the Van Driest-transformed velocity satisfies the incompressible log-law. It is found that the log region is extended farther in the wall-normal direction compared to the log region in incompressible boundary layer.