• Title/Summary/Keyword: delayed output

Search Result 159, Processing Time 0.033 seconds

A study of Chronic Constrictive Pericarditis (만성 교약성 심낭염의 임상적 고찰)

  • 하종곤
    • Journal of Chest Surgery
    • /
    • v.23 no.4
    • /
    • pp.676-682
    • /
    • 1990
  • From August, 1978, to August, 1989, 22 patients underwent pericardiectomy for chronic constrictive pericarditis on the Department of Thoracic and Cardiovascular Surgery, School of Medicine, Keimyung University. There were 14 male and 6 female patients ranging from 11 years to 70 years old[mean age, 44. 1 years]. All patients underwent radical pericardiectomy through a median sternotomy. There was 1 postoperative death[4.s%]. This patient died of low cardiac output 7 days after pericardiectomy. Postoperative complications were hemothorax[2 patients], low cardiac output[2 patients], generalized seizure[1 patient], wound infection[1 patient] and pneumonia[1 patient]. Clinical and pathological findings showed tuberculous origin in 12 patients[54.6%], unknown etiology in 8 patients[36.4%] pyogenic pericarditis in 2 patients[9.1%]. Three hemodynamic responses to pericardiectomy were observed: [1] rapid response, where central venous pressure[CUP] fell below 10 cmH2O by 24 hours in 6 patients; [2] delayed response. Where CVP fell below 10 cmH2O by 48 hours in 12 patients; and [3] no response of CVP in 4 patients. Follow-up ranged from 6 to 62 months with an average of 35.3 months. Postoperative Functional Class was obtained for 21 surviving patients and showed 18 patients[81.8%] to be New York Heart Association functional class I or II.

  • PDF

An Efficient Channel Estimation Method in MIMO-OFDM Systems (MIMO-OFDM 시스템에서 효율적인 채널 추정 방식)

  • Jeon, Hyoung-Goo;Kim, Jun-Sig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2275-2284
    • /
    • 2015
  • In this paper, the Walsh coded orthogonal training signals for 4 × 4 multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems are designed and the channel estimation equations are derived as a closed form, taking account of the inter training signal interference problems caused by the multi-path delayed signals. The performances of the proposed channel estimation method are analyzed and compared with the conventional methods[9,14] by using computer simulation. The simulation results show that the proposed methods has better performances, compared with the conventional methods[9,14]. As a result, the proposed method can be used for MIMO-OFDM systems with null sub-carriers.

Robust H∞ Fuzzy Control for Discrete-Time Nonlinear Systems with Time-Delay (시간 지연을 갖는 이산 시간 비선형 시스템에 대한 H∞ 퍼지 강인 제어기 설계)

  • Kim Taek Ryong;Park Jin Bae;Joo Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.324-329
    • /
    • 2005
  • In this paper, a robust $H\infty$ stabilization problem to a uncertain discrete-time nonlinear systems with time-delay via fuzzy static output feedback is investigated. The Takagj-Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear system with time-delayed state. Then, the parallel distributed compensation technique is used for designing of the robust fuzzy controller. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H\infty$ controllers are given in terms of linear matrix inequalities via similarity transform and congruence transform technique. We have shown the effectiveness and feasibility of the proposed method through the simulation.

Degrees of Freedom of Multi-Cell MIMO Interference Broadcast Channels With Distributed Base Stations

  • Huang, Hongbing;Liu, Junyi;Zhang, Yi;Cai, Qing;Zhang, Bowei;Jiang, Fengwen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.635-656
    • /
    • 2019
  • In this paper, we investigate the degrees of freedom (DoF) of a multi-cell multi-user multiple-input multiple-output (MIMO) interference broadcast channel (IBC) with non-cooperation distributed base stations (BS), where each BS serves users of its corresponding cell. When all BSs simultaneously transmit their own signals over the same frequency band in the MIMO IBC, the edge users in each cell will suffer the inter-cell interference (ICI) and inter-user interference (IUI) signals. In order to eliminate the ICI and IUI signals, a distributed space time interference alignment (DSTIA) approach is proposed where each BS has only limited access to distributed moderately-delay channel state information at the transmitter (CSIT). It is shown that the DSTIA scheme can obtain the appreciate DoF gains. In addition, the DoF upper bound is asymptotically achievable as the number of antenna at each BS increases. It is shown that the DSTIA method can get DoF gains over other interference alignment schemes with delayed CSIT in literature. Moreover, the DSTIA method can attain higher DoFs than the IA schemes with global CSIT for certain antenna configurations.

Signal-Space Jamming Scheme for Disturbing Target Localization of Bistatic MIMO Radar System (바이스태틱 MIMO 레이다 시스템의 위치탐지 무력화를 위한 신호공간 재밍 기법)

  • Yeo, Kwanggoo;Chung, Wonzoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.878-883
    • /
    • 2018
  • A jamming design scheme to disturb target position estimation of a bistatic multiple-input multiple-output(MIMO) radar system is presented. The proposed method exploits the received signals from distributed multiple electronic sensors and combines them to produce a jamming signal. The proposed algorithm can eliminate the target by transmitting the delayed sum or the weighted sum of the received senor signals. Simulation results confirm the performance of the proposed method.

Transmitter Beamforming and Artificial Noise with Delayed Feedback: Secrecy Rate and Power Allocation

  • Yang, Yunchuan;Wang, Wenbo;Zhao, Hui;Zhao, Long
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.374-384
    • /
    • 2012
  • Utilizing artificial noise (AN) is a good means to guarantee security against eavesdropping in a multi-inputmulti-output system, where the AN is designed to lie in the null space of the legitimate receiver's channel direction information (CDI). However, imperfect CDI will lead to noise leakage at the legitimate receiver and cause significant loss in the achievable secrecy rate. In this paper, we consider a delayed feedback system, and investigate the impact of delayed CDI on security by using a transmit beamforming and AN scheme. By exploiting the Gauss-Markov fading spectrum to model the feedback delay, we derive a closed-form expression of the upper bound on the secrecy rate loss, where $N_t$ = 2. For a moderate number of antennas where $N_t$ > 2, two special cases, based on the first-order statistics of the noise leakage and large number theory, are explored to approximate the respective upper bounds. In addition, to maintain a constant signal-to-interferenceplus-noise ratio degradation, we analyze the corresponding delay constraint. Furthermore, based on the obtained closed-form expression of the lower bound on the achievable secrecy rate, we investigate an optimal power allocation strategy between the information signal and the AN. The analytical and numerical results obtained based on first-order statistics can be regarded as a good approximation of the capacity that can be achieved at the legitimate receiver with a certain number of antennas, $N_t$. In addition, for a given delay, we show that optimal power allocation is not sensitive to the number of antennas in a high signal-to-noise ratio regime. The simulation results further indicate that the achievable secrecy rate with optimal power allocation can be improved significantly as compared to that with fixed power allocation. In addition, as the delay increases, the ratio of power allocated to the AN should be decreased to reduce the secrecy rate degradation.

Third order Sigma-Delta Modulator with Delayed Feed-forward Path for Low-power Operation (저전력 동작을 위한 지연된 피드-포워드 경로를 갖는 3차 시그마-델타 변조기)

  • Lee, Minwoong;Lee, Jongyeol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.57-63
    • /
    • 2014
  • This paper proposes an architecture of $3^{rd}$ order SDM(Sigma-Delta Modulator) with delayed feed-forward path in order to reduce the power consumption and area. The proposed SDM improve the architecture of conventional $3^{rd}$ order SDM which consists of two integrators. The proposed architecture can increase the coefficient values of first stage doubly by inserting the delayed feed-forward path. Accordingly, compared with the conventional architecture, the capacitor value($C_I$) of first integrator is reduced by half. Thus, because the load capacitance of first integrator became the half of original value, the output current of first op-amp is reduced as 51% and the capacitance area of first integrator is reduced as 48%. Therefore, the proposed method can optimize the power and the area. The proposed architecture in this paper is simulated under conditions which are supply voltage of 1.8V, input signal 1Vpp/1KHz, signal bandwidth of 24KHz and sampling frequency of 2.8224MHz in the 0.18um CMOS process. The simulation results are SNR(Signal to Noise Ratio) of 88.9dB and ENOB(Effective Number of Bits) of 14-bits. The total power consumption of the proposed SDM is $180{\mu}W$.

An Output Feedback Predictive Control for Stabilizing a System With Multiple Delayed Inputs (지연된 다중 입력을 갖는 시스템을 안정화하는 출력 궤환 예측 제어)

  • Yang, Janghoon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.424-429
    • /
    • 2019
  • The evolution of networking technology such as commercialization of 5G systems provides foundation for information exchange and control of systems over the network. In addition, importance of controlling a system with delay is increasing significantly, since various phenomena in the network are associated with delay. In this paper, with a predictive control which has been studied for designing a controller with low complexity, we propose a novel predictive control for a system with multi-inputs such that it can keeps the complexity almost the same regardless of the number of inputs and degree of delay. The asymptotic stability of the proposed control with a static output feedback is also proved. The numerical simulation shows that the proposed method is superior in complexity and the performance of finding feasible controllers to the existing predictive control and a conventional method based on augmented states.

A Study on ${\pi}$/4-DQPSK with Nonredundant Multiple Error Correction

  • Song, Seog-Il;Han, Young-Yearl
    • ETRI Journal
    • /
    • v.21 no.2
    • /
    • pp.9-21
    • /
    • 1999
  • In this paper, to enhance the performance of ${\pi}$/4-DQPSK (${\pi}$/4-differential quadrature phase shift keying), the scheme using nonredundant multiple error correction is proposed and investigated. This scheme for the differential detection of ${\pi}$/4-DQPSK uses the signal output which is delayed for more than two time slots as the parity check bit and applies it to nonredundant multiple error correction. The proposed system was used for studying the performance of ${\pi}$/4-DQPSK with Nonredundant Error Correction (NEC) in additive white Gaussian noise (AWGN) and Nakagami fade modeled mobile communication channel, and it was observed that the performance increased as the error correction capability increased.

  • PDF

Internet Based Network Control using Fuzzy Modeling

  • Lee, Jong-Bae;Park, Chang-Woo;Sung, Ha-Gyeong;Lim, Joon-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1162-1167
    • /
    • 2004
  • This paper presents the design methodology of digital fuzzy controller(DFC) for the systems with time-delay. We propose the fuzzy feedback controller whose output is delayed with unit sampling period and predicted. The analysis and the design problem considering time-delay become easy because the proposed controller is syncronized with the sampling time. The stabilization problem of the digital fuzzy system with time-delay is solved by linear matrix inequality(LMI) theory. Convex optimization techniques are utilized to solve the stable feedback gains and a common Lyapunov function for designed fuzzy control system. To show the effectiveness the proposed control scheme, the network control example is presented.

  • PDF