• Title/Summary/Keyword: delay term

Search Result 309, Processing Time 0.024 seconds

Speech Recognition Using MSVQ/TDRNN (MSVQ/TDRNN을 이용한 음성인식)

  • Kim, Sung-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.268-272
    • /
    • 2014
  • This paper presents a method for speech recognition using multi-section vector-quantization (MSVQ) and time-delay recurrent neural network (TDTNN). The MSVQ generates the codebook with normalized uniform sections of voice signal, and the TDRNN performs the speech recognition using the MSVQ codebook. The TDRNN is a time-delay recurrent neural network classifier with two different representations of dynamic context: the time-delayed input nodes represent local dynamic context, while the recursive nodes are able to represent long-term dynamic context of voice signal. The cepstral PLP coefficients were used as speech features. In the speech recognition experiments, the MSVQ/TDRNN speech recognizer shows 97.9 % word recognition rate for speaker independent recognition.

Robust Internal Model Control of Three-Phase Active Power Filter for Stable Operation in Electric Power Equipment (전력설비의 안정한 운용을 위한 3상 능동전력필터의 강인한 내부모델제어)

  • Park, Ji-Ho;Kim, Dong-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1487-1493
    • /
    • 2013
  • A new simple control method for active power filter, which can realize the complete compensation of harmonics is proposed. In the proposed scheme, a model-based digital current control strategy is presented. The proposed control system is designed and implemented in a form referred to as internal model control structure. This method provides a convenient way for parameterizing the controller in term of the nominal system model, including time-delays. As a result, the resulting controller parameters are directly set based on the power circuit parameters, which make tuning of the controllers straightforward task. In the proposed control algorithm, overshoots and oscillations due to the computation time delay is prevented by explicit incorporating of the delay in the controller transfer function. In addition, a new compensating current reference generator employing resonance model implemented by a DSP(Digital Signal Processor) is introduced. Resonance model has an infinite gain at resonant frequency, and it exhibits a band-pass filter. Consequently, the difference between the instantaneous load current and the output of this model is the current reference signal for the harmonic compensation.

Real-time Sound Localization Using Generalized Cross Correlation Based on 0.13 ㎛ CMOS Process

  • Jin, Jungdong;Jin, Seunghun;Lee, SangJun;Kim, Hyung Soon;Choi, Jong Suk;Kim, Munsang;Jeon, Jae Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.175-183
    • /
    • 2014
  • In this paper, we present the design and implementation of real-time sound localization based on $0.13{\mu}m$ CMOS process. Time delay of arrival (TDOA) estimation was used to obtain the direction of the sound signal. The sound localization chip consists of four modules: data buffering, short-term energy calculation, cross correlation, and azimuth calculation. Our chip achieved real-time processing speed with full range ($360^{\circ}$) using three microphones. Additionally, we developed a dedicated sound localization circuit (DSLC) system for measuring the accuracy of the sound localization chip. The DSLC system revealed that our chip gave reasonably accurate results in an experiment that was carried out in a noisy and reverberant environment. In addition, the performance of our chip was compared with those of other chip designs.

Electricity Cost Minimization for Delay-tolerant Basestation Powered by Heterogeneous Energy Source

  • Deng, Qingyong;Li, Xueming;Li, Zhetao;Liu, Anfeng;Choi, Young-june
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5712-5728
    • /
    • 2017
  • Recently, there are many studies, that considering green wireless cellular networks, have taken the energy consumption of the base station (BS) into consideration. In this work, we first introduce an energy consumption model of multi-mode sharing BS powered by multiple energy sources including renewable energy, local storage and power grid. Then communication load requests of the BS are transformed to energy demand queues, and battery energy level and worst-case delay constraints are considered into the virtual queue to ensure the network QoS when our objective is to minimize the long term electricity cost of BSs. Lyapunov optimization method is applied to work out the optimization objective without knowing the future information of the communication load, real-time electricity market price and renewable energy availability. Finally, linear programming is used, and the corresponding energy efficient scheduling policy is obtained. The performance analysis of our proposed online algorithm based on real-world traces demonstrates that it can greatly reduce one day's electricity cost of individual BS.

Shared Vehicle Teleoperation using a Virtual Driving Interface (가상 운전 인터페이스를 활용한 자동차 협력 원격조종)

  • Kim, Jae-Seok;Lee, Kwang-Hyun;Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.243-249
    • /
    • 2015
  • In direct vehicle teleoperation, a human operator drives a vehicle at a distance through a pair of master and slave device. However, if there is time delay, it is difficult to remotely drive the vehicle due to slow response. In order to address this problem, we introduced a novel methodology of shared vehicle teleoperation using a virtual driving interface. The methodology was developed with four components: 1) virtual driving environment, 2) interface for virtual driving environment, 3) path generator based on virtual driving trajectory, 4) path following controller. Experimental results showed the effectiveness of the proposed approach in simple and cluttered driving environment as well. In the experiments, we compared two sampling methods, fixed sampling time and user defined instant, and finally merged method showed best remote driving performance in term of completion time and number of collision.

Search-based Sentiment and Stock Market Reactions: An Empirical Evidence in Vietnam

  • Nguyen, Du D.;Pham, Minh C.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.5 no.4
    • /
    • pp.45-56
    • /
    • 2018
  • The paper aims to examine relationships between search-based sentiment and stock market reactions in Vietnam. This study constructs an internet search-based measure of sentiment and examines its relationship with Vietnamese stock market returns. The sentiment index is derived from Google Trends' Search Volume Index of financial and economic terms that Vietnamese searched from January 2011 to June 2018. Consistent with prediction from sentiment theories, the study documents significant short-term reversals across three major stock indices. The difference from previous literature is that Vietnam stock market absorbs the contemporaneous decline slower while the subsequent rebound happens within a day. The results of the study suggest that the sentiment-induced effect is mainly driven by pessimism. On the other hand, optimistic investors seem to delay in taking their investment action until the market corrects. The study proposes a unified explanation for our findings based on the overreaction hypothesis of the bearish group and the strategic delay of the optimistic group. The findings of the study contribute to the behavioral finance strand that studies the role of sentiment in emerging financial markets, where noise traders and limits to arbitrage are more obvious. They also encourage the continuous application of search data to explore other investor behaviors in securities markets.

Phase Switching Mechanism for WiFi-based Long Distance Networks in Industrial Real-Time Applications

  • Wang, Jintao;Jin, Xi;Zeng, Peng;Wang, Zhaowei;Wan, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.78-101
    • /
    • 2017
  • High-quality industrial control is critical to ensuring production quality, reducing production costs, improving management levels and stabilizing equipment and long-term operations. WiFi-based Long Distance (WiLD) networks have been used as remote industrial control networks. Real-time performance is essential to industrial control. However, the original mechanism of WiLD networks does not minimize end-to-end delay and restricts improvement of real-time performance. In this paper, we propose two algorithms to obtain the transmitting/receiving phase cycle length for each node such that real time constraints can be satisfied and phase switching overhead can be minimized. The first algorithm is based on the branch and bound method, which identifies an optimal solution. The second is a fast heuristic algorithm. The experimental results show that the execution time of the algorithm based on branch and bound is less than that of the heuristic algorithm when the network is complex and that the performance of the heuristic algorithm is close to the optimal solution.

Performance Analysis of an ATM MUX with a New Space Priority Mechanism under ON-OFF Arrival Processes

  • Bang, Jongho;Ansari, Nirwan;Tekinay, Sirin
    • Journal of Communications and Networks
    • /
    • v.4 no.2
    • /
    • pp.128-135
    • /
    • 2002
  • We propose a new space priority mechanism, and analyze its performance in a single Constant Bit Rate (CBR) server. The arrival process is derived from the superposition of two types of traffics, each in turn results from the superposition of homogeneous ON-OFF sources that can be approximated by means of a two-state Markov Modulated Poisson Process (MMPP). The buffer mechanism enables the Asynchronous Transfer Mode (ATM) layer to adapt the quality of the cell transfer to the Quality of Service (QoS) requirements and to improve the utilization of network resources. This is achieved by "Selective-Delaying and Pushing-ln"(SDPI) cells according to the class they belong to. The scheme is applicable to schedule delay-tolerant non-real time traffic and delay-sensitive real time traffic. Analytical expressions for various performance parameters and numerical results are obtained. Simulation results in term of cell loss probability conform with our numerical analysis.

ASSESSMENT OF IMPLANT STABILITY AFTER IMMEDIATE LOADING IN DOGS : CLINICAL AND RADIOGRAPHIC STUDY (성견에서 즉시 부하 후 임프란트 안정성 평가 : 임상적, 방사선학적 연구)

  • Lee, Joo-Young;Kim, Su-Gwan;Kim, Sang-Ho;Kim, Wan-Bae
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.2
    • /
    • pp.131-139
    • /
    • 2005
  • The therapeutic goal of implant dentistry is not merely tooth replacement but total oral rehabilitation. Considering dental implants as a treatment option can be provided patients with positive, long-term results. Implant dentistry has gone through many phases over the years. Modern technology and design allows us to predictably place our dental implants often load the implants at the time of placement. The purpose of this study is to evaluate the implant stability after immediate loading in dogs. The control group was performed delay loading and experimental group was immediate loading. Each group was measured periotest value(PTV) to evaluate clinical mobility and performed radiographic examination to evaluate marginal bone loss. Statistically significant difference was not founded in control group between experimental group in PTV(P>0.05) and marginal bone loss(P>0.05). Finally, implant stability after immediate loading was similar to delay loading implant.

EXPONENTIALLY FITTED NUMERICAL SCHEME FOR SINGULARLY PERTURBED DIFFERENTIAL EQUATIONS INVOLVING SMALL DELAYS

  • ANGASU, MERGA AMARA;DURESSA, GEMECHIS FILE;WOLDAREGAY, MESFIN MEKURIA
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.419-435
    • /
    • 2021
  • This paper deals with numerical treatment of singularly perturbed differential equations involving small delays. The highest order derivative in the equation is multiplied by a perturbation parameter 𝜀 taking arbitrary values in the interval (0, 1]. For small 𝜀, the problem involves a boundary layer of width O(𝜀), where the solution changes by a finite value, while its derivative grows unboundedly as 𝜀 tends to zero. The considered problem contains delay on the convection and reaction terms. The terms with the delays are approximated using Taylor series approximations resulting to asymptotically equivalent singularly perturbed BVPs. Inducing exponential fitting factor for the term containing the singular perturbation parameter and using central finite difference for the derivative terms, numerical scheme is developed. The stability and uniform convergence of difference schemes are studied. Using a priori estimates we show the convergence of the scheme in maximum norm. The scheme converges with second order of convergence for the case 𝜀 = O(N-1) and for the case 𝜀 ≪ N-1, the scheme converge uniformly with first order of convergence, where N is number of mesh intervals in the domain discretization. We compare the accuracy of the developed scheme with the results in the literature. It is found that the proposed scheme gives accurate result than the one in the literatures.