• Title/Summary/Keyword: delay performance

Search Result 4,130, Processing Time 0.029 seconds

Useful Characteristics for Controlling the Cancellation Performance and Center Frequency of a Linearization Loop

  • Kang, Sang-Gee;Hong, Sung-Yong
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.231-234
    • /
    • 2006
  • The cancellation performance of a linearization loop is limited by the degree of an amplitude imbalance and a phase imbalance. A delay mismatch causes a phase variation as a function of frequency. Therefore, the cancellation performance and linearization bandwidth are limited by a delay mismatch. The expression for the effects of an amplitude imbalance, a phase imbalance, and a delay mismatch on the characteristics of a linearization loop is derived and analyzed. The simulation results are compared with the results obtained by means of using a commercial simulation tool and the exact agreement is reported. The derived equation could be used in designing a linearization loop and predicting the cancellation performance of the linearization loop usefully. Some useful characteristics, known from the simulation results obtained by using the derived equation, of a linearization loop for designing and implementing feedforward amplifiers are described in detail.

  • PDF

Throughput and Delay Analysis of a Reliable Cooperative MAC Protocol in Ad Hoc Networks

  • Jang, Jaeshin;Kim, Sang Wu;Wie, Sunghong
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.524-532
    • /
    • 2012
  • In this paper, we present the performance evaluation of the reliable cooperative media access control (RCO-MAC) protocol, which has been proposed in [1] by us in order to enhance system throughput in bad wireless channel environments. The performance of this protocol is evaluated with computer simulation as well as mathematical analysis in this paper. The system throughput, two types of average delays, average channel access delay, and average system delay, which includes the queuing delay in the buffer, are used as performance metrics. In addition, two different traffic models are used for performance evaluation: The saturated traffic model for computing system throughput and average channel access delay, and the exponential data generation model for calculating average system delay. The numerical results show that the RCO-MAC protocol proposed by us provides over 20% more system throughput than the relay distributed coordination function (rDCF) scheme. The numerical results show that the RCO-MAC protocol provides a slightly higher average channel access delay over a greater number of source nodes than the rDCF. This is because a greater number of source nodes provide more opportunities for cooperative request to send (CRTS) frame collisions and because the value of the related retransmission timer is greater in the RCO-MAC protocol than in the rDCF protocol. The numerical results also confirm that the RCO-MAC protocol provides better average system delay over the whole gamut of the number of source nodes than the rDCF protocol.

Adaptive MPSAM technology for Compensation of Rayleigh Fading Channels (레일레이 페이딩 채널 보상을 위한 적응형 MPSAM 기술)

  • Kim, Jeong-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4563-4567
    • /
    • 2010
  • In this paper, the adaptive MPSAM is suggested in order to analyze and improve problems caused by the case of the impact of delay waves on Pilot Symbol Assisted Modulation (PSAM), a singular Pilot method. PSAM predicts and compensates amplitude and phases caused on fading channels, using the Pilot Symbol. In addition, the Basic method is not only analyzed but also grafted onto the suggested method properly; therefore, the performance could be improved. Comparing to the Basic method, the BER performance can be distinguished in case that the level of delay on delay waves with the suggested method goes below 0.7. On the other hand, the BER performance can be inferior due to a considerable effect of the adjacent symbol in the event that the level of delay on delay waves is worse. However, the BER performance is rather improved on the point where the level of delay on delay waves is serious because the Basic method uses reciprocal compensation. Hence, stable improvement can be expected in all areas which receive the influence of delay waves within one symbol once grafted onto the suggested method.

Adaptive Time Delay Compensation Process in Networked Control System

  • Kim, Yong-Gil;Moon, Kyung-Il
    • International journal of advanced smart convergence
    • /
    • v.5 no.1
    • /
    • pp.34-46
    • /
    • 2016
  • Networked Control System (NCS) has evolved in the past decade through the advances in communication technology. The problems involved in NCS are broadly classified into two categories namely network issues due to network and control performance due to system network. The network problems are related to bandwidth allocation, scheduling and network security, and the control problems deal with stability analysis and delay compensation. Various delays with variable length occur due to sharing a common network medium. Though most delays are very less and mostly neglected, the network induced delay is significant. It occurs when sensors, actuators, and controllers exchange data packet across the communication network. Networked induced delay arises from sensor to controller and controller to actuator. This paper presents an adaptive delay compensation process for efficient control. Though Smith predictor has been commonly used as dead time compensators, it is not adaptive to match with the stochastic behavior of network characteristics. Time delay adaptive compensation gives an effective control to solve dead time, and creates a virtual environment using the plant model and computed delay which is used to compensate the effect of delay. This approach is simulated using TrueTime simulator that is a Matlab Simulink based simulator facilitates co-simulation of controller task execution in real-time kernels, network transmissions and continuous plant dynamics for NCS. The simulation result is analyzed, and it is confirmed that this control provides good performance.

Performance Analysis of Wireless Communication Networks for Smart Metering Implemented with Channel Coding Adopted Multi-Purpose Wireless Communication Chip (오류 정정 부호를 사용하는 범용 무선 통신 칩으로 구현된 스마트 미터링 무선 네트워크 시스템 성능 분석)

  • Wang, Hanho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.321-326
    • /
    • 2015
  • Smart metering is one of the most implementable internet-of-thing service. In order to implement the smart metering, a wireless communication network should be newly designed and evaluated so as to satisfy quality-of-service of smart metering. In this paper, we consider a wireless network for the smart metering implemented with multi-purpose wireless chips and channel coding-functioned micro controllers. Especially, channel coding is newly adopted to improve successful frame transmission probability. Based on the successful frame transmission probability, average transmission delay and delay violation probability are analyzed. Using the analytical results, service coverage expansion is evaluated. Through the delay analysis, service feasibility can be verified. According to our results, channel coding needs not to be utilized to improve the delay performance if the smart metering service coverage is several tens of meters. However, if more coverage is required, chanel coding adoption definitely reduces the delay time and improve the service feasibility.

Performance Analysis of GCRA Policing Algorithm for Constant-Bit Rate Service (항등비트율 서비스를 위한 GCRA 폴리싱 알고리즘의 성능 해석)

  • Kim, Young-Beom
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2157-2165
    • /
    • 2006
  • In implementing GCRA, well known as the representative user traffic policing algorithm for constant-bit rate service, it is essential to set proper values for delay variation tolerance in order to prevent network overload and excessive user data loss due to delay variation incurred inevitably during transmission process. In this paper, we investigate the performance of GCRA algorithm for various values of delay variation tolerance and suggest a guideline for setting proper delay variation tolerance values.

Controller Synthesis for Nonlinear Systems with Time-delay using Model Algorithmic Control (MAC)

  • Choi, Hyung-Jo;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.566-570
    • /
    • 2005
  • A digital controller for nonlinear time-delay system is proposed in this paper. A nonlinear time-delay system is discretized by using Taylor's discretization method. And the discretized system can be converted to a general nonlinear system. For this reason, general nonlinear controller synthesis can be applied to the discretized time-delay system. We adopted MAC controller synthesis for this study. Computer simulations are conducted to verify the performance of the proposed method. The results of simulation show good performance of the proposed controller synthesis and the proposed method is useful to control nonlinear time-delay system easily.

  • PDF

Mobile Robot Teleoperation to Consider the Stability over the Time-Delay of Wireless Network (무선네트워크의 시간지연을 고려한 원격이동로봇의 안정성에 대한 연구)

  • Ro, Young-Shick;Kang, Hee-Jun;Suh, Young-Soo;Yoo, Sun-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.340-342
    • /
    • 2007
  • When a system is teleoperated in the indoor environment through the wireless LAN, the communication time delay that is due to the inherent characteristic and surrounding environment is random and unbounded. The time delay has a significant effect on the stability and performance of the teleoperating system. In this paper, we present the method that is the image compression, measuring time delay and switching control-mode corresponding to time delay automatically, to improve stability and performance, and the simple experiment is conducted to demonstrate the feasibility

  • PDF

Performance Analysis of a Dynamic Priority Control Scheme for Delay-Sensitive Traffic (음성 트래픽을 위한 동적우선권제어방식의 성능분석)

  • 김도규;김용규;조석팔
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.8
    • /
    • pp.3-11
    • /
    • 2000
  • This paper considers the performance of a dynamic priority control function (DPCF) of a threshold-based Bernoulli priority jump (TBPJ) scheme. Loss-sensitive and delay-sensitive traffics are applied to a system with a TBPJ scheme that is a general state-dependent Bernoulli scheduling scheme. Loss-sensitive and delay-sensitive traffics represent sound and data, respectively. Under the TBPJ scheme, the first packet of the loss-sensitive traffic buffer goes into the delay-sensitive traffic buffer with Bernoulli probability p according to system states which represent the buffer thresholds and the number of packets waiting for scheduling. Performance analysis shows that TBPJ scheme obtains large performance build-up for the delay-sensitive traffic without performance degradation for the loss-sensitive traffic. TBPJ scheme shows also better performance than that of HOL scheme.

  • PDF

Performance Anomaly of the IEEE 802.11 DCF in Different Frame Error Rate Conditions

  • Kang, Koohong
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.739-748
    • /
    • 2012
  • We propose an analytic model to compute the station's saturated throughput and packet delay performance of the IEEE 802.11 DCF (Distributed Coordination Function) in which frame transmission error rates in the channel are different from each other. Our analytic model shows that a station experiencing worse frame error rates than the others suffers severe performance degradation below its deserved throughput and delay performance. 802.11 DCF adopts an exponential back-off scheme. When some stations suffer from high frame error rates, their back-off stages should be increased so that others get the benefit from the smaller collision probabilities. This impact is then recursively applied to degrade the performance of the victim stations. In particular, we show that the performance is considerably degraded even if the frame error rate of the victim station satisfies the receiver input level sensitivity that has been specified in the IEEE 802.11 standard. We also verify the analytic results by the OPNET simulations.