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1. INTRODUCTION 

 
Time-delay occurred during the information processing and 
data transmission in many engineering systems. In recent 
years, there were many systems that were controlled via 
network and transferred the data from a remote site owing to 
the development of networks, in the sense that time-delay, 
which possibly occurs during the data transmission through 
the network, is the most important factor for the system 
performance.  

The time-delayed system in the continuous-time space has a 
property of infinitive dimensions due to time-delay, and the 
problems of a time-delayed system are not to be able to solve 
the problems in the continuous-time space. These problems 
also occurred in the linear time-invariant system where the 
problems have more complexities and difficulties for solving 
the problems. For this reason, many control methods 
developed for the finite dimension system have been 
experienced in difficulties for applying it directly to the 
time-delayed system for the last several decades. Therefore, a 
development of new design methods to control the 
time-delayed system is required to control it more precisely. 

A typical control method for a system, which has 
time-delay, is a predictive control [1]. A control method using 
the Smith predictor has been proposed in the fields of process 
control. This method configures each model with the objective 
to control the system and time-delay. Thus, it designs a system 
to remove the effects of time-delay in the characteristic 
equation of the whole closed loop transfer function through a 
structural method. Thus, the Smith predictor makes it possible 
to design a controller by considering a system, which has 
time-delay, to a system, which doesn’t include time-delay. 
This method has the merit that a controller can be designed 
using a structural method, regardless of the effects of 
time-delay, however, it can only be applied to a linear system. 
In addition, this method has the demerit that an exact model 
equation for the system and time-delay is required 
[1][2][8][9].  

An estimator is also proposed as an alternative method of            
predictive control. This estimator calculated state changes in            
the delayed time using an analysis of the time region of a state            
equation, and obtains an undelayed and exact plant state for 
the time that is required to calculate control signals. However, 
this method only compensates for time-delay between sensors            
and controllers. However, it is impossible to compensate for            
the time-delay for the input of the controller. [4][5].  
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In this paper, we propose a new controller synthesis for 
nonlinear time-delay system. A nonlinear time-delay system 
can be discretized using Taylor-series expansion and this 
discretized system is able to be converted to a general 
nonlinear system by adopting new internal variables. Thus, the 
existed nonlinear controller synthesis can be applied to 
time-delay system. We adopted MAC method for the 
controller of time-delay system. Model Algorithmic Control 
(MAC) is a one-step ahead predictive controller, in which the 
control law is obtained from the minimization of the output 
error at time k+r. It uses an impulse response model to predict 
the future behavior of the process. MAC was developed in 
France in the late 70s within the chemical process industry. 
The original concept was established by Richale et al. (1978), 
and later the theory was further advanced by Mehra et al. 
(1980) and Mehar and Rouhani (1980).  

This paper consists of the following chapters to explain the 
results of the study. Chapter 2 presents the method of 
discretization for a nonlinear system with input time-delay. 
Chapter 3 introduces the MAC controller synthesis for 
nonlinear system. Chapter 4 proves the proposed controller for 
time-delay nonlinear system has a good performance by 
conducting some computer simulations. And chapter 5 
provides the conclusion of this study.  

 
2. TIME-DISCRETIZATION OF NONLINEAR 

TIME-DELAY SYSTEM 
 

 A discrete-time model for a nonlinear continuous-time 
control system that has time-delay can be obtained using a 
Taylor-series under the assumption of zero-order hold. This 
discretization method provides a relatively more exact 
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discrete-time model compared to a continuous-time nonlinear 
system, and makes it possible to apply the existing nonlinear 
control method to a discrete system, which includes 
time-delay.  

  A continuous-time nonlinear control system, which has a 
single input, can be presented as Eq. (1) using a state-space 
expression.  

( ) ( ( )) ( ( )) ( )dx t f x t g x t u t D
dt

= + −                   (1) 

where  represents the system state, 
 is an input variable,  is time-delay, and  

and 

nRXx ⊂∈
u R∈ D ( )f x

( )g x  are nonlinear functions for x , respectively. In 

addition, the zero-order hold was assumed for a fixed 
sampling period, and constant input in a single sampling 
region.  

( ) ( ) ( ) constant,u t u kT u k kT t kT T= ≡ = ≤ < +       
D qT γ= +                                      (2) 
where is sampling phase,  is an integer multiple of 

 for the sampling period, 
T q

{1, 2 , 3, . ..}q ∈ γ  is a small 
time-delay of 0 Tγ< ≤ . The delayed input variable was 

applied to the system that has values for the different sampling 
regions, as presented in Eq. (3).  
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γ
γ

− − ≤ < +⎧
− = ⎨ − + ≤ <⎩ +

        (3) 

      
           Fig. 1 Delayed input signal 
   
  A discrete system for the nonlinear system that has input 
time-delay can be configured as Eq. (4).  
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where ( )x k  is the value of a state vector of x  at 

, kt t kT= = M is truncation order of the Taylor-series. 
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  The discrete expression for Eq. (1), which is the original 
continuous-time systems, is presented by Eq. (6).  

( 1) ( ( ), ( 1), ( ))M
Tx k x k u k q u k+ = Φ − − − q             (6) 

where the function M
TΦ depends on the sampling period of 

and truncation order of T M . As mentioned above, the 
discretization of a nonlinear system using a Taylor-series 
presented better results than that of the existing Euler method. 
The comparison can be performed using discretization errors. 
  In order to bring system (6) to the standard state-space 

sampled-data representation form of the original 
continuous-time system where the input  at time kT 

explicitly appears in the dynamic equations, let us now define 
auxiliary state variables for the past input values as follows: 
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whose dynamic can be realized by the following difference 
equations: 
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Therefore, the standard sampled-data representation of (1) in 
state-space is given by the following augmented nonlinear 
discrete-time system: 
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 and 

, the above sampled-data representation can be written 

in a more compact form: 
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3. Model Algorithmic Control(MAC) for nonlinear 

system  
3 .1 State-space formulation of MAC for linear processes 
  Consider linear processes described by a discrete-time state 
space model of the form of Eq. (11).  

)()()1( kBukAxkx mm +=+  

)()( kCxky mm =                                  (11) 

where the subscript m has been added to explicitly indicate 
that  and  represent estimates of x and y obtained by 

simulating the model, given the manipulated input u(k). This 
notation will help differentiate  from the measured 
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output, which will still be denoted by y. The model of Eq. (11) 
can be simulated on-line to predict the future behavior of the 
process. In particular, from the model described by Eq. (11), 
we obtain: 
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from which one can predict the future changes in the output as 
follows: 
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  When these predicted changes are added to the measured 
output signal y(k), one obtains future predictions of the output: 
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where the superscript ^ is used to indicate that  represent a 

prediction of the output. It is interesting to observe that the 
output predictions in Eq. (14) are “closed-loop” predictions in 
the sense that they make use of the measured output signal. 
Also that the manipulated input move u(k) affects the output 
after r sampling periods, and this conforms with the 
interpretation of  as the overall delay of the system 
[  is the process dead time, and is the sampling 

delay].  

ŷ

tr∆
tr ∆− )1( t∆

  At every time step, the control computer can calculate the 
output prediction Eq. (14), driven by u(k) and y(k), where 

 is obtained by on-line simulation of the state 

equations of Eq.(11): 
)(kxm

)()()1( kBukAxkx mm +=+  

The question that arises then is what should be the choice of 
u(k) to obtain a desirable output response after r time steps. If 
u(k) is chosen so that  is exactly the set-point value, 

this would clearly create a nonrobust situation. Instead, one 
can request  to be in the right direction and cover a 
fraction of the “distance” between  and the 

set-point value. In other words, one can define a desirable 
value of the output at the (k+r)th time step by: 
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where α is a tunable filter parameter such that 10 <<α . 
Clearly, 0→α  corresponds to  and, 

therefore, will try to force the output to go to set point as soon 
as possible, whereas 

spd yrky →+ )(

1→α  corresponds to 
, leaving the output unaffected. An 

intermediate choice of 

)1(ˆ)( −+→+ rkyrkyd

α corresponds to a desirable value of 
the output in between  and  that tries to bridge 

the gap to a certain extent. Equation (15) is referred to as the 
“reference trajectory” in the MAC literature.  

spy )1(̂ −+rky

  Once the reference trajectory has been specified, the 
question then becomes how to choose the control move u(k) so 
that )(̂ rky +  will match )( rkyd + . this can be formulated as an 

optimization problem: 
2
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or, equivalently, in view of Eqs. (14) and (15): 
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3 .2 Nonlinear MAC for nonlinear processes 
  The steps of the state-space linear MAC of the previous 
subsection can be extended “word by word” to nonlinear 
processes described by discrete-time models: 
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where again the subscript m is added to indicate estimates of x 
and y obtained by model simulation and differentiate the 
simulated y from the measured y. 
  On-line simulation of the model described by Eq. (18) can 
be used to predict the future changes in the output y as 
follows: 
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  When these predicted changes are added to the measured 
output signal y(k), one obtains the following “closed-loop” 
predictions of the output: 
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  Defining a linear reference trajectory as same as in the 
linear case (Eq. (15)): 

)1(ˆ)1()( −++−=+ rkyyrky spd αα  

one can derive a nonlinear MAC controller by requesting the 
output prediction t match the reference trajectory in the sense 
of minimizing the performance index of Eq. (16): 
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In view of Eqs. (15) and (20), this becomes: 
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  In the absence of the input constraints, this minimization 
problem is trivially solvable. Minimizing u(k) is the solution 
of the nonlinear algebraic equation: 
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4. COMPUTER SIMULATIONS 

 
  In this section, two computer simulations are conducted to 
show the performance of proposed controller. One is CSTR 
model and the other is Van der Pol system.  
  First, CSTR model is conducted. CSTR is a general 
nonlinear chemical process and the equation of the model can 
be expressed as shown in Eq. (23): 

2'( ) ( ) 3 ( ) ( ( ))(1 ( ))x t x t x t u t D t x t= − − + − −           (23) 
  Using Taylor-series expansion, the above system can be   
discreitzed as representation forms of following: 

)())(()1( kBukxkx D
T +Φ=+  

  The on-line model for MAC controller is presented by the 
truncation order of N=2 of Taylor’ s discretization method. 
Initial value is assumed . Time-delay which is 
exerted on input is assumed D=1. 

(0) 0x =
α  at reference 

trajectory is assumed 0.7 and the set-point value is 0.7. Fig. 1 
shows the response of MAC controller of CSTR system.  
 

 
    Fig. 1 Response of CSTR under MAC controller 
 
  Second, Van der Pol system is conducted. Van der Pol 
system is a typical nonlinear system. This system can be 
analyzed using a mass-spring-damper system, which has a 
position-dependent damping coefficient, and a RLC electric 
circuit. If this system has an initial value besides an 
equilibrium point, a periodical vibration will be maintained in 
a limited region. This periodical vibration is called a limit 
cycle. The system can be expressed using a dynamics equation 
as presented in Eq. (24). The state space expression is Eq. 
(25).  
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where the state vector is . In 
the case of the existing input time-delay, such as 

TT xxXXX ]'[][ 21 ==
D qT γ= + , 

the discrete expression is expressed as Eq. (26) using 
the Taylor’s discretization method.  

where the item of the partial differentiation of  is to 
be cyclically defined as follows.  
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  The on-line model for MAC controller is presented by the 
order of N=2 of Taylor’s discretization method. Initial values 
of the system are . Adjustable parameter of 
reference trajectory is 

(0,0) [0.1 0]Tx =

7.0=α  and set point is set by 1.  
Fig. 2 shows the output of MAC controller of Van der Pol 
system.  
 

   
 Fig. 2 Response of Van der Pol system under MAC controller 
   
 

5. CONCLUSIONS 
 
In this paper, we proposed a new controller synthesis for 
nonlinear time-delay system. Taylor series expansion is used 
to obtain a discrete-time nonlinear system of continuous-time 
system, and the discretized system can be converted to a 
general nonlinear system by using auxiliary variables. A 
digital controller is designed on this system using MAC 
controller synthesis. Two computer simulations are conducted 
to verify the performance of the proposed method and the 
results of simulations show good performance and useful.  
 
A CKNOWLEDGMENTS 

Ths work was supported by Korea Science and 
Engineering Foundation (KOSEF)  

 
REFERENCES 

 
[1] N. S. Nise, Control Systems Engineering 2/e, The 

Benjamin/Cummings, pp. 594-598, 1995  
[2] T. E. Marlin, Process Control Design: Processes and 

Control System for Dynamic Performance, 3/e, 
McGraw-Hill, Inc., pp. 621-624, 1995 

[3] M. Soroush and C. Kravaris, “Discrete-Time Nonlinear 

569



ICCAS2005                                        June 2-5, KINTEX, Gyeonggi-Do, Korea       
 

Controller Synthesis by Input/Output Linearization”, 
AIChE Journal, Vol. 38, No. 12, 1992 

[4] W. Zhang, M. S. Branicky, S. M. Phillips, “Stability of 
Networked Control Systems”, Control Systems 
Magazine, IEEE, Vol. 21, Issue. 1, pp. 84-89, 2001 

[5] W. Zhang, “Stability Analysis of Networked Control 
Systems”, Department of Electrical Engineering and 
Computer Science, Case Western Reverse University, 
Thesis for Ph.D, 2001 

[6] N. Kazantzis, C. Kravaris, “Time-discretization of 
nonlinear control system via Taylor method”, 
Computers & Chemical Engineering, Vol. 23, Issue 6, 
pp. 763-784, 1999 

[7] Ji Hyang Park, K. T. Chong, Kazantzis, Parlos, Time 
discretization of nonlinear systems with delayed 
multi-input using Taylor series, International Journal of 
KSME, Vol. 18, No. 7, p. 1107-1120, 2004 

[8] H. R. Huh, J. H. Park, and J. M. Lee, “Compensation of 
Time-Delay using Predictive Controller”, Journal of 
IEEK, Vol. 36, Issue 2, 1999 

[9] Suk Won Lee, “Performance Improvement of 
Time-Delay System Controller”, Journal of Engineering 
Research Institute, Vol. 16, No. 1, pp. 155-168, 1997 

[10] Franklin, G. F., Powell, J. d. and Workman, M. L., 
Digital Control of Dynamic System, Addison-Wesley, 
New York, 1988 

[11] Ji Hyang Park, K. T. Chong, Kazantzis, Parlos, Time 
discretization of non-affine nonlinear systems with 
delayed input using Taylor series, International Journal 
of KSME, Vol. 18, No. 8, pp. 1297-1305, 2004 

 
 
 
 
 
 

570


	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print



