• Title/Summary/Keyword: delay effect

Search Result 1,567, Processing Time 0.032 seconds

Active control of a nonlinear and hysteretic building structure with time delay

  • Liu, Kun;Chen, Long-Xiang;Cai, Guo-Ping
    • Structural Engineering and Mechanics
    • /
    • v.40 no.3
    • /
    • pp.431-451
    • /
    • 2011
  • Time delay inevitably exists in active control systems, and it may cause the degradation of control efficiency or instability of the systems. So time delay needs to be compensated in control design in order to eliminate its negative effect on control efficiency. Today time delay in linear systems has been more studied and some treating methods had been worked out. However, there are few treating methods for time delay in nonlinear systems. In this paper, an active controller for a nonlinear and hysteretic building structure with time delay is studied. The nonlinear and hysteretic behavior of the system is illustrated by the Bouc-Wen model. By specific transformation and augmentation of state parameters, the motion equation of the system with explicit time delay is transformed into the standard state space representation without any explicit time delay. Then the fourth-order Runge-Kutta method and instantaneous optimal control method are applied to the controller design with time delay. Finally, numerical simulations and comparisons of an eight-story building using the proposed time-delay controller are carried out. Simulation results indicate that the control performance will deteriorate if time delay is not taken into account in the control design. The simulations also prove the proposed time delay controller in this paper can not only effectively compensate time delay to get better control effectiveness, but also work well with both small and large time delay problems.

Adaptive Time Delay Compensation Process in Networked Control System

  • Kim, Yong-Gil;Moon, Kyung-Il
    • International journal of advanced smart convergence
    • /
    • v.5 no.1
    • /
    • pp.34-46
    • /
    • 2016
  • Networked Control System (NCS) has evolved in the past decade through the advances in communication technology. The problems involved in NCS are broadly classified into two categories namely network issues due to network and control performance due to system network. The network problems are related to bandwidth allocation, scheduling and network security, and the control problems deal with stability analysis and delay compensation. Various delays with variable length occur due to sharing a common network medium. Though most delays are very less and mostly neglected, the network induced delay is significant. It occurs when sensors, actuators, and controllers exchange data packet across the communication network. Networked induced delay arises from sensor to controller and controller to actuator. This paper presents an adaptive delay compensation process for efficient control. Though Smith predictor has been commonly used as dead time compensators, it is not adaptive to match with the stochastic behavior of network characteristics. Time delay adaptive compensation gives an effective control to solve dead time, and creates a virtual environment using the plant model and computed delay which is used to compensate the effect of delay. This approach is simulated using TrueTime simulator that is a Matlab Simulink based simulator facilitates co-simulation of controller task execution in real-time kernels, network transmissions and continuous plant dynamics for NCS. The simulation result is analyzed, and it is confirmed that this control provides good performance.

On the Optimal Cyclic Delay Value in Cyclic Delay Diversity (순환 지연 다이버시티 기법에서의 최적의 순환 지연 값)

  • Kim, Yong-June;Rim, Min-Joong;Jeong, Byung-Jang;Noh, Tae-Gyun;Kim, Ho-Yun;Lim, Dae-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.643-651
    • /
    • 2008
  • In this paper, we propose a method to determine the optimal cyclic delay value of cyclic delay diversity(CDD) in orthogonal frequency division multiplexing(OFDM) systems. As the cyclic delay value increases, we can get signal to interference and noise ratio(SINR) gain by diversity effect, while SINR loss increases because of channel estimation errors. If the optimal delay value obtained by the proposed method is applied to CDD scheme, we can minimize the required SINR for a given FER(frame error rate) under the above mentioned trade-off.

Time-Discretization of Nonlinear control systems with State-delay via Taylor-Lie Series (Taylor-Lei Series에 의한 지연이 있는 비선형 시스템의 시간 이산화)

  • Zhang, Yuanliang;Lee, Yi-Dong;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.125-127
    • /
    • 2005
  • In this paper, we propose a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption. This scheme is applied to the sample-data representation of a nonlinear system with constant state tine-delay. The mathematical expressions of the discretization scheme are presented and the effect of the time-discretization method on key properties of nonlinear control system with state tine-delay, such as equilibrium properties and asymptotic ability, is examined. The proposed scheme provides a finite-dimensional representation for nonlinear systems with state time-delay enabling existing controller design techniques to be applied to then. The performance of the proposed discretization procedure is evaluated using a nonlinear system. For this nonlinear system, various sampling rates and time-delay values are considered.

  • PDF

EFFECT OF TIME DELAY IN AN AUTOTROPH-HERBIVORE SYSTEM WITH NUTRIENT CYCLING

  • Das, Kalyan;Sarkar, A.K.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.597-606
    • /
    • 1998
  • In the present study we consider a mathematical model of a non-interactive type autotroph-herbivore system in which the amount of autotroph biomass consumed by the herbivore is assumed to follow a Holling type II functional response. We have also incorpo-rated discrete time delays in the numerical response term to represent a delay due to gestation and in the recycling term which represent a delay due to gestation and in the recycling term which represents the time required for bacterial decomposition. We have derived con-dition for global asymptotic stability of the model in the absence of delays. Conditions for delay-induced asymptotic stability of the steady state are also derived. The length of the delay preserving stability has been estimated and interpreted ecologically.

Modeling and Simulation of the Cardiovascular System Using Baroreflex Control Model (압반사 제어모델을 이용한 심혈관시스템 모델링 및 시뮬레이션)

  • 최병철;전계록
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2004.05a
    • /
    • pp.109-117
    • /
    • 2004
  • In this paper, we consider the aortic sinus baroreceptor, which is the most representative baroreceptor sensing the variance of pressure in the cardiovascular system, and propose heart activity control model to observe the effect of delay time in heart period and stroke volume under the regulation of baroreflex in the aortic sinus. The proposed heart activity baroreflex regulation model contains electric circuit sub-model. We constituted the time delay sub-model to observe sensitivity of heart activity baroreflex regulation model by using the variable value to represent the control signal transmission time from the output of baroreflex regulation model to efferent nerve through central nervous system. The simulation object of this model is to observe variability of the cardiovascular system by variable value in time delay sub-model. As simulation results, we observe three patterns of the cardiovascular system variability by the time delay, First, if the time delay over 2.5 second, aortic pressure and stroke volume and heart rate is observed nonperiodically and observed. Finally, if time delay under 0.1 second, then heart rate and aortic pressure-heart rate trajectory is maintained in stable state.

  • PDF

Mobile Robot Teleoperation to Consider the Stability over the Time-Delay of Wireless Network (무선네트워크의 시간지연을 고려한 원격이동로봇의 안정성에 대한 연구)

  • Ro, Young-Shick;Kang, Hee-Jun;Suh, Young-Soo;Yoo, Sun-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.340-342
    • /
    • 2007
  • When a system is teleoperated in the indoor environment through the wireless LAN, the communication time delay that is due to the inherent characteristic and surrounding environment is random and unbounded. The time delay has a significant effect on the stability and performance of the teleoperating system. In this paper, we present the method that is the image compression, measuring time delay and switching control-mode corresponding to time delay automatically, to improve stability and performance, and the simple experiment is conducted to demonstrate the feasibility

  • PDF

STABILITY OF POSITIVE STEADY-STATE SOLUTIONS IN A DELAYED LOTKA-VOLTERRA DIFFUSION SYSTEM

  • Yan, Xiang-Ping;Zhang, Cun-Hua
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.715-731
    • /
    • 2012
  • This paper considers the stability of positive steady-state solutions bifurcating from the trivial solution in a delayed Lotka-Volterra two-species predator-prey diffusion system with a discrete delay and subject to the homogeneous Dirichlet boundary conditions on a general bounded open spatial domain with smooth boundary. The existence, uniqueness and asymptotic expressions of small positive steady-sate solutions bifurcating from the trivial solution are given by using the implicit function theorem. By regarding the time delay as the bifurcation parameter and analyzing in detail the eigenvalue problems of system at the positive steady-state solutions, the asymptotic stability of bifurcating steady-state solutions is studied. It is demonstrated that the bifurcating steady-state solutions are asymptotically stable when the delay is less than a certain critical value and is unstable when the delay is greater than this critical value and the system under consideration can undergo a Hopf bifurcation at the bifurcating steady-state solutions when the delay crosses through a sequence of critical values.

Determination of equivalent blasting load considering millisecond delay effect

  • Song, Zhan-Ping;Li, Shi-Hao;Wang, Jun-Bao;Sun, Zhi-Yuan;Liu, Jing;Chang, Yu-Zhen
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.745-754
    • /
    • 2018
  • In the analysis of the effects of rock tunnel blasting vibration on adjacent existing buildings, the model of simplified equivalent load produces higher calculation result of vibration, due to the lack of consideration of the millisecond delay effect. This paper, based on the static force equivalence principle of blasting load, proposes a new determination method of equivalent load of blasting vibration. The proposed method, based on the elastic-static force equivalence principle of stress wave, equals the blasting loads of several single blastholes in the same section of millisecond blasting to the triangle blasting load curve of the exploded equivalent elastic boundary surface. According to the attenuation law of stress wave, the attenuated equivalent triangle blasting load curve of the equivalent elastic boundary is applied on the tunnel excavation contour surface, obtaining the final applied equivalent load. Taking the millisecond delay time of different sections into account, the time-history curve of equivalent load of the whole section applied on the tunnel excavation contour surface can be obtained. Based on Sailing Tunnel with small spacing on Sanmenxia-Xichuan Expressway, an analysis on the blasting vibration response of the later and early stages of the tunnel construction is carried out through numerical simulation using the proposed equivalent load model considering millisecond delay effect and the simplified equivalent triangle load curve model respectively. The analysis of the numerical results comparing with the field monitoring ones shows that the calculation results obtained from the proposed equivalent load model are closer to the measured ones and more feasible.

LONG-TERM VARIATION OF THE SHUTTER DELAY TIME OF Y4KCAM OF THE CTIO 1.0 M TELESCOPE

  • Lee, Jae-Woo;Pogge, Richard
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.6
    • /
    • pp.289-293
    • /
    • 2016
  • We investigate the long-term spatial drift of the center and the temporal variation of the shutter delay time map of Y4KCam mounted on the CTIO 1.0 m telescope. We have collected shutter delay time maps over eight years as a part of our long-term survey program. We find that the center of the shutter delay time map can drift up to $450{\mu}m$, equivalent to ${\approx}30pixels$, on the CCD. This effect can result in a small amount of error in integration time without the proper shutter delay time correction, but it does not appear to cause any significant problems in photometric measurements. We obtain a mean shutter delay time of $69.1{\pm}0.8$ ms and find no temporal variation of the shutter delay time of Y4KCam over eight years, indicative of the mechanical stability of the shutter. We suggest that using a master shutter delay time correction frame would be sufficient to achieve high precision photometry, which does not exceed photometric errors ${\approx}1.7mmag$ across the CCD frame for exposure times longer than 1 s.