• Title/Summary/Keyword: delay differential equation

Search Result 82, Processing Time 0.026 seconds

HOPF BIFURCATION IN NUMERICAL APPROXIMATION FOR DELAY DIFFERENTIAL EQUATIONS

  • Zhang, Chunrui;Liu, Mingzhu;Zheng, Baodong
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.319-328
    • /
    • 2004
  • In this paper we investigate the qualitative behaviour of numerical approximation to a class delay differential equation. We consider the numerical solution of the delay differential equations undergoing a Hopf bifurcation. We prove the numerical approximation of delay differential equation had a Hopf bifurcation point if the true solution does.

A NOTE ON THE APPROXIMATE SOLUTIONS TO STOCHASTIC DIFFERENTIAL DELAY EQUATION

  • KIM, YOUNG-HO;PARK, CHAN-HO;BAE, MUN-JIN
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.5_6
    • /
    • pp.421-434
    • /
    • 2016
  • The main aim of this paper is to discuss the difference between the Euler-Maruyama's approximate solutions and the accurate solution to stochastic differential delay equation. To make the theory more understandable, we impose the non-uniform Lipschitz condition and weakened linear growth condition. Furthermore, we give the pth moment continuous of the approximate solution for the delay equation.

OSCILATION AND STABILITY OF NONLINEAR NEUTRAL IMPULSIVE DELAY DIFFERENTIAL EQUATIONS

  • Duan, Yongrui;Tian, Peng;Zhang, Shunian
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.243-253
    • /
    • 2003
  • In this paper, oscillation and stability of nonlinear neutral impulsive delay differential equation are studied. The main result of this paper is that oscillation and stability of nonlinear impulsive neutral delay differential equations are equivalent to oscillation and stability of corresponding nonimpulsive neutral delay differential equations. At last, two examples are given to illustrate the importance of this study.

ON STABILITY AND BIFURCATION OF PERIODIC SOLUTIONS OF DELAY DIFFERENTIAL EQUATIONS

  • EL-SHEIKH M. M. A.;EL-MAHROUF S. A. A.
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.281-295
    • /
    • 2005
  • The purpose of this paper is to study a class of delay differential equations with two delays. First, we consider the existence of periodic solutions for some delay differential equations. Second, we investigate the local stability of the zero solution of the equation by analyzing the corresponding characteristic equation of the linearized equation. The exponential stability of a perturbed delay differential system with a bounded lag is studied. Finally, by choosing one of the delays as a bifurcation parameter, we show that the equation exhibits Hopf and saddle-node bifurcations.

OSCILLATION AND ASYMPTOTIC BEHAVIOR FOR DELAY DIFFERENTIAL EQUATIONS

  • Choi, Sung-Kyu;Koo, Nam-Jip;Ryu, Hyun-Sook
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.2
    • /
    • pp.641-652
    • /
    • 2000
  • In this paper we will survey the recent results about oscillation and asymptotic behavior for the linear differential equation with a single delay x'9t)+p(t)x(t-r)=0, $t\geqt_1$.

A DIFFERENTIAL EQUATION WITH DELAY FROM BIOLOGY

  • Otrocol, Diana
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1037-1048
    • /
    • 2008
  • The purpose of this paper is to present a differential equation with delay from biological excitable medium. Existence, uniqueness and data dependence (monotony, continuity, differentiability with respect to parameter) results for the solution of the Cauchy problem of biological excitable medium are obtained using weakly Picard operator theory.

  • PDF

The Three-Dimensional Partial Differential Equation with Constant Coefficients of Time-Delay of Alternating Direction Implicit Format

  • Chu, QianQian;Jin, Yuanfeng
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1068-1074
    • /
    • 2018
  • In this paper, we consider the delay partial differential equation of three dimensions with constant coefficients. We established the alternating direction difference scheme by the standard finite difference method, gave the order of convergence of the format and the expression of the difference scheme truncation errors.

A NON-ASYMPTOTIC METHOD FOR SINGULARLY PERTURBED DELAY DIFFERENTIAL EQUATIONS

  • File, Gemechis;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.39-53
    • /
    • 2014
  • In this paper, a non-asymptotic method is presented for solving singularly perturbed delay differential equations whose solution exhibits a boundary layer behavior. The second order singularly perturbed delay differential equation is replaced by an asymptotically equivalent first order neutral type delay differential equation. Then, Simpson's integration formula and linear interpolation are employed to get three term recurrence relation which is solved easily by Discrete Invariant Imbedding Algorithm. Some numerical examples are given to validate the computational efficiency of the proposed numerical scheme for various values of the delay and perturbation parameters.

SEMILINEAR NONLOCAL DIFFERENTIAL EQUATIONS WITH DELAY TERMS

  • Jeong, Jin-Mun;Cheon, Su Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.627-639
    • /
    • 2013
  • The goal of this paper is to obtain the regularity and the existence of solutions of a retarded semilinear differential equation with nonlocal condition by applying Schauder's fixed point theorem. We construct the fundamental solution, establish the H$\ddot{o}$lder continuity results concerning the fundamental solution of its corresponding retarded linear equation, and prove the uniqueness of solutions of the given equation.

PERIODIC SOLUTIONS OF STOCHASTIC DELAY DIFFERENTIAL EQUATIONS AND APPLICATIONS TO LOGISTIC EQUATION AND NEURAL NETWORKS

  • Li, Dingshi;Xu, Daoyi
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1165-1181
    • /
    • 2013
  • In this paper, we consider a class of periodic It$\hat{o}$ stochastic delay differential equations by using the properties of periodic Markov processes, and some sufficient conditions for the existence of periodic solution of the delay equations are given. These existence theorems improve the results obtained by It$\hat{o}$ et al. [6], Bainov et al. [1] and Xu et al. [15]. As applications, we study the existence of periodic solution of periodic stochastic logistic equation and periodic stochastic neural networks with infinite delays, respectively. The theorem for the existence of periodic solution of periodic stochastic logistic equation improve the result obtained by Jiang et al. [7].