• Title/Summary/Keyword: delay bounded

Search Result 127, Processing Time 0.027 seconds

STABILITY OF DELAY-DISTRIBUTED HIV INFECTION MODELS WITH MULTIPLE VIRAL PRODUCER CELLS

  • ELAIW, A.M.;ELNAHARY, E.KH.;SHEHATA, A.M.;ABUL-EZ, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.1
    • /
    • pp.29-62
    • /
    • 2018
  • We investigate a class of HIV infection models with two kinds of target cells: $CD4^+$ T cells and macrophages. We incorporate three distributed time delays into the models. Moreover, we consider the effect of humoral immunity on the dynamical behavior of the HIV. The viruses are produced from four types of infected cells: short-lived infected $CD4^+$T cells, long-lived chronically infected $CD4^+$T cells, short-lived infected macrophages and long-lived chronically infected macrophages. The drug efficacy is assumed to be different for the two types of target cells. The HIV-target incidence rate is given by bilinear and saturation functional response while, for the third model, both HIV-target incidence rate and neutralization rate of viruses are given by nonlinear general functions. We show that the solutions of the proposed models are nonnegative and ultimately bounded. We derive two threshold parameters which fully determine the positivity and stability of the three steady states of the models. Using Lyapunov functionals, we established the global stability of the steady states of the models. The theoretical results are confirmed by numerical simulations.

Observer Design for A Class of UncertainState-Delayed Nonlinear Systems

  • Lu Junwei;Feng Chunmei;Xu Shengyuan;Chu Yuming
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.448-455
    • /
    • 2006
  • This paper deals with the observer design problem for a class of state-delayed nonlinear systems with or without time-varying norm-bounded parameter uncertainty. The nonlinearities under consideration are assumed to satisfy the global Lipschitz conditions and appear in both the state and measured output equations. The problem we address is the design of a nonlinear observer such that the resulting error system is globally asymptotically stable. For the case when there is no parameter uncertainty, a sufficient condition for the solvability of this problem is derived in terms of linear matrix inequalities and the explicit formula of a desired observer is given. Based on this, the robust observer design problem for the case when parameter uncertainties appear is considered and the solvability condition is also given. Both of the solvability conditions obtained in this paper are delay-dependent. A numerical example is provided to demonstrate the applicability of the proposed approach.

Extension of ReInForM Protocol for (m,k)-firm Real-time Streams in Wireless Sensor Networks

  • Li, Bijun;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.231-236
    • /
    • 2012
  • For real-time wireless sensor network applications, it is essential to provide different levels of quality of service (QoS) such as reliability, low latency, and fault-tolerant traffic control. To meet these requirements, an (m,k)-firm based real-time routing protocol has been proposed in our prior work, including a novel local transmission status indicator called local DBP (L_DBP). In this paper, a fault recovery scheme for (m,k)-firm real-time streams is proposed to improve the performance of our prior work, by contributing a delay-aware forwarding candidates selection algorithm for providing restricted redundancy of packets on multipath with bounded delay in case of transmission failure. Each node can utilize the evaluated stream DBP (G_DBP) and L_DBP values as well as the deadline information of packets to dynamically define the forwarding candidate set. Simulation results show that for real-time service, it is possible to achieve both reliability and timeliness in the fault recovery process, which consequently avoids dynamic failure and guarantees meeting the end-to-end QoS requirement.

Implementation of Real-Time Communication in CAN for a Humanoid Robot (CAN 기반 휴머노이드 로봇의 실시간 데이터 통신 구현)

  • Kwon Sun-Ku;Kim Byung-Yoon;Kim Jin-Hwan;Huh Uk-Youl
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.1
    • /
    • pp.24-30
    • /
    • 2006
  • The Controller Area Network (CAN) is being widely used for real-time control application and small-scale distributed computer controller systems. When the stuff bits are generated by bit-stuffing mechanism in the CAN network, it causes jitter including variations in response time and delay In order to eliminate this jitter, stuff bits must be controlled to minimize the response time and to reduce the variation of data transmission time. This paper proposes the method to reduce the stuff bits by restriction of available identifier and bit mask using exclusive OR operation. This da manipulation method are pretty useful to the real-time control strategy with respect to performance. However, the CAN may exhibit unfair behavior under heavy traffic conditions. When there are both high and low priority messages ready for transmission, the proposed precedence priority filtering method allows one low priority message to be exchanged between any two adjacent higher priority messages. In this way, the length of each transmission delays is upper bounded. These procedures are implemented as local controllers for the ISHURO(Inha Semvung Humanoid Robot).

A Survey on Transport Protocols for Wireless Multimedia Sensor Networks

  • Costa, Daniel G.;Guedes, Luiz Affonso
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.241-269
    • /
    • 2012
  • Wireless networks composed of multimedia-enabled resource-constrained sensor nodes have enriched a large set of monitoring sensing applications. In such communication scenario, however, new challenges in data transmission and energy-efficiency have arisen due to the stringent requirements of those sensor networks. Generally, congested nodes may deplete the energy of the active congested paths toward the sink and incur in undesired communication delay and packet dropping, while bit errors during transmission may negatively impact the end-to-end quality of the received data. Many approaches have been proposed to face congestion and provide reliable communications in wireless sensor networks, usually employing some transport protocol that address one or both of these issues. Nevertheless, due to the unique characteristics of multimedia-based wireless sensor networks, notably minimum bandwidth demand, bounded delay and reduced energy consumption requirement, communication protocols from traditional scalar wireless sensor networks are not suitable for multimedia sensor networks. In the last decade, such requirements have fostered research in adapting existing protocols or proposing new protocols from scratch. We survey the state of the art of transport protocols for wireless multimedia sensor networks, addressing the recent developments and proposed strategies for congestion control and loss recovery. Future research directions are also discussed, outlining the remaining challenges and promising investigation areas.

Study on the time-delay compensation of RTK correction message for improvement of continuous position surveying performance under unexpected temporal datalink loss/cut-off (RTK 보정정보 난수신 환경에서의 측위연속성 향상을 위한 시간지연 보상연구)

  • Park, Byung-Woon;Song, June-Sol;Kee, Chang-Don;Yang, Chul-Soo;Tcha, Dek-Kie
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.625-631
    • /
    • 2010
  • In this paper, robustness performance of SNUR message is compared with those of existing ones, RTCM(Radio Technical Commission for Maritime Services) v2 MT(Message Type) 18/19 and MT 20/21 under a poor broadcast condition such as temporary data loss or disconnection We defined the temp oral data loss as 2 second delay and reconnection after disconnection as 7 second latency, and then evaluated its robustness for each latency case by double differentiating the observables. Our result shows that SNUR protocol method can reduce the latency error of the existing RTCM messages by 30~60%. Moreover, a rover using SNUR message, whose latency error is bounded within 1/4 L1 wave length, can figure out its own fixed position continuously in spite of 7 second disconnection, while the other using RTCM message, whose error is larger than half wave length, cannot keep its previous fixed solution.

Guaranteed Cost Control for Discrete-time Linear Uncertain Systems with Time-varying Delay (시변 시간지연을 가지는 이산 선형 불확실성 시스템에 대한 보장 비용 제어)

  • Kim, Ki-Tae;Cho, Sang-Hyun;Lee, Sang-Kyung;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.20-26
    • /
    • 2002
  • This paper deals with the guaranteed cost control problems for a class of discrete-time linear uncertain systems with time-varying delay. The uncertain systems under consideration depend on time-varying norm-bounded parameter uncertainties. We address the existence condition and the design method of the memoryless state feedback control law such that the closed loop system not only is quadratically stable but also guarantees an adequate level of performance for all admissible uncertainties. Through some changes of variables and Schur complement, It is shown that the sufficient condition can be rewritten as an LMI(linear matrix inequality) form in terms of all variables.

Digital Implementation of Backing up control of Truck-trailer type Mobile Robots (트럭-트레일러 타입의 모바일로봇을 위한 귀환 제어기 설계)

  • Ku, Ja-Yl;Park, Chang-Woo
    • 전자공학회논문지 IE
    • /
    • v.46 no.2
    • /
    • pp.33-45
    • /
    • 2009
  • In this paper, the implementation of the backward movement control of a truck-trailer type mobile robot using fuzzy model based control scheme considering the practical constraints, computing time-delay and quantization is presented. We propose the fuzzy feedback controller whose output is delayed with unit sampling period and predicted. The analysis and the design problem considering the computing time-delay become very easy because the proposed controller is syncronized with the sampling time. Also, the stability analysis is made when the quantization exists in the implementation of the fuzzy control architectures and it is shown that if the trivial solution of the fuzzy control system without quantization is asymptotically stable, then the solutions of the fuzzy control system with quantization are uniformly ultimately bounded. The experimental results are shown to verify the effectiveness of the proposed scheme.

A Dynamic Synchronization Method for Multimedia Delivery and Presentation based on QoS (QoS를 이용한 동적 멀티미디어 전송 및 프리젠테이션 동기화 기법)

  • 나인호;양해권;고남영
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.2
    • /
    • pp.145-158
    • /
    • 1997
  • Method for synchronizing multimedia data is needed to support continuous transmission of multimedia data through a network in a bounded time and it also required for supporting continuous presentation of multimedia data with the required norminal playout rate in distributed network environments. This paper describes a new synchronization method for supporting delay-sensitive multimedia Presentation without degration of Quality of services of multimedia application. It mainly aims to support both intermedia and intermedia synchronization by absorbing network variations which may cause skew or jitter. In order to remove asynchonization problems, we make use of logical time system, dynamic buffer control method, and adjusting synchronization intervals based on the quality of services of a multimedia. It might be more suitable for working on distribute[1 multimedia systems where the network delay variation is changed from time to time and no global clock is supported. And it also can effectively reduce the amount of buffer requirements needed for transfering multimedia data between source and destination system by adjusting synchronization intervals with acceptable packet delay limits and packet loss rates.

  • PDF

Output feedback $H^{\infty}$ contol for linear systems with delayed state and control input (상태와 제어입력에 시간지연을 가지는 선형 시스템의 출력궤환 H^\infty 제어)

  • 정은태;권성하;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.688-691
    • /
    • 1997
  • This paper presents an $H^{\infty}$ controller design method for linear time-invariant systems with delayed state and control. Using the second method of Lyapunov, the stability for delayed systems is discussed. For delayed systems, we derive a sufficient condition of the bounded real lemma(BRL) which is similar to BRL for nondelayed systems. And the sufficient conditions for the existence of an output feedback $H^{\infty}$ controller of any order are given in terms of three linear matrix inequalities(LMls). Futhermore, we briefly explain how to construct such controllers from the positive definite solutions of their LMIs and give a simple example to illustrate the validity of the proposed design procedure.e.

  • PDF