• Title/Summary/Keyword: delamination.

Search Result 996, Processing Time 0.028 seconds

Study on Thermal Residual Stresses and Transmission Characteristics in N-pole Type Frequency Selective Surface Embedded Composite Structures (N-pole 종류의 FSS가 결합된 복합재료 구조의 잔류응력과 전파투과특성)

  • Park, Kyoung Mi;Hwang, In Han;Chun, Heoung Jae;Hong, Ic Pyo;Park, Yong Bae;Kim, Yoon Jae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • In this paper, the delamination and failures in frequency selected surface(FSS) caused by residual stresses in the FSS embedded hybrid composites due to the difference between the coefficients of thermal expansion of components and the transmission characteristic changes due to deformation of FSS patterns by residual stresses were studied. FSS may have different electromagnetic characteristics depending on the type of element, design variables, and arrangement. Design variables of dipole FSS were determined using PSO(Particle Swarm Optimization) to obtain the transmission characteristic for the target resonant frequency. Subsequently, the design variables of other types of N-pole(tripole, cross dipole, and Jerusalem cross) were determined based on the dimensions of the dipole for the comparisons of residual stresses of FSS embedded composite structures and transmission characteristics. In addition, effects of FSS pattern, and stacking sequence of composite laminates were considered.

Modeling cover cracking due to rebar corrosion in RC members

  • Allampallewar, Satish B.;Srividya, A.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.713-732
    • /
    • 2008
  • Serviceability and durability of the concrete members can be seriously affected by the corrosion of steel rebar. Carbonation front and or chloride ingress can destroy the passive film on rebar and may set the corrosion (oxidation process). Depending on the level of oxidation (expansive corrosion products/rust) damage to the cover concrete takes place in the form of expansion, cracking and spalling or delamination. This makes the concrete unable to develop forces through bond and also become unprotected against further degradation from corrosion; and thus marks the end of service life for corrosion-affected structures. This paper presents an analytical model that predicts the weight loss of steel rebar and the corresponding time from onset of corrosion for the known corrosion rate and thus can be used for the determination of time to cover cracking in corrosion affected RC member. This model uses fully the thick-walled cylinder approach. The gradual crack propagation in radial directions (from inside) is considered when the circumferential tensile stresses at the inner surface of intact concrete have reached the tensile strength of concrete. The analysis is done separately with and without considering the stiffness of reinforcing steel and rust combine along with the assumption of zero residual strength of cracked concrete. The model accounts for the time required for corrosion products to fill a porous zone before they start inducing expansive pressure on the concrete surrounding the steel rebar. The capability of the model to produce the experimental trends is demonstrated by comparing the model's predictions with the results of experimental data published in the literature. The effect of considering the corroded reinforcing steel bar stiffness is demonstrated. A sensitivity analysis has also been carried out to show the influence of the various parameters. It has been found that material properties and their inter-relations significantly influence weight loss of rebar. Time to cover cracking from onset of corrosion for the same weight loss is influenced by corrosion rate and state of oxidation of corrosion product formed. Time to cover cracking from onset of corrosion is useful in making certain decisions pertaining to inspection, repair, rehabilitation, replacement and demolition of RC member/structure in corrosive environment.

Effect of Ground Calcium Carbonate Modified by Washless Multilayering of Polyelectrolytes on Paper Quality (무세척 고분자전해질 다층흡착 처리된 중질탄산칼슘이 종이의 품질에 미치는 영향)

  • Lee, Jegon;Im, Wanhee;Sim, Kyujeong;Lee, Hak Lae;Youn, Hye Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.115-126
    • /
    • 2015
  • In this study, we investigated influence of ground calcium carbonate (GCC) modified by washless multilayering of polyelectrolytes on paper quality. Three layers of polyelectrolytes (cationic starch/anionic polyacrylamide/cationic starch) were formed on the surface of GCC using laboratory inline washless polyelectrolytes multilayering system, which was called inline LbL GCC. Base papers were prepared with untreated GCC or inline LbL GCC using a laboratory handsheet former. These handsheets were coated with rod coater, and then printed by black ink. Properties of base paper and fold crack of coated paper were evaluated. Base paper with inline LbL GCC showed much higher mechanical strength in terms of tensile index, strain, internal bond strength, and folding endurance. The fold crack of coated paper with inline LbL GCC occurred more frequently compared to coated paper with untreated GCC. This might be due to highly improved internal bond strength of base paper, which resulted in smaller delamination that played a role of stress dissipation. It would be recommended to design a proper coating layer in order to prevent fold crack.

Fold Cracking of High Grammage Coated Paper Depending on Pulp Composition and Structure of Base Paper (도공원지의 원료 조성 및 구조에 따른 고평량 도공지의 접힘 터짐)

  • Sim, Kyujeong;Youn, Hye Jung;Oh, Kyudeok;Lee, Hak Lae;Yeu, Seung Uk;Lee, Yong Min
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.38-45
    • /
    • 2015
  • Fold cracking is one of quality troubles of coated papers. In this study, the fold cracking of high grammage ($250g/m^2$) coated paper made with the different pulp composition and layer structure of base paper was investigated. The single layered, high grammage base paper was prepared by mixing of hardwood and softwood bleached kraft pulp fibers with the different ratios. The high grammage coated paper showed the higher fold cracking than low grammage coated paper because of the increase in thickness. The increase in the content of softwood pulp fibers reduced the fold cracking in the case of high grammage coated paper. When the creasing process was conducted before folding process, the fold cracking of coated paper decreased. By manufacturing the base paper with multiply structure, the fold cracking of coated paper could be reduced significantly, especially when the BCTMP and OCC were used as a middle layer and the creasing process was carried out. The delamination of layers in base paper affected the fold cracking positively.

High Temperature Tribology Behavior of 4YSZ Coatings Fabricated by Air Plasma Spray (APS) and Electron Beam Physical Vapor Deposition (EB-PVD) (플라즈마 용사 및 전자빔 물리기상 증착법으로 제조된 4YSZ 코팅의 고온마찰마모 거동)

  • Yang, Young-Hwan;Park, Chan-Young;Lee, Won-Jun;Kim, Sun-Joo;Lee, Sung-Min;Kim, Seongwon;Kim, Hyung-Tae;Oh, Yoon-Suk
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.6
    • /
    • pp.258-263
    • /
    • 2013
  • 4 mol% Yttria-stabilized zirconia (4YSZ) coatings are fabricated by Air Plasma Spray (APS) and Electron Beam Physical Vapor Deposition (EB-PVD) with top coating of thermal barrier coating (TBC). NiCrAlY based bond coat is prepared as 150 ${\mu}m$ thickness by conventional APS (Air Plasma Spray) method on the NiCrCoAl alloy substrate before deposition of top coating. Each 4YSZ top coating shows different tribological behaviors based on the inherent layer structures. 4YSZ by APS which has splat-stacked structure shows lower friction coefficient but higher wear rate than 4YSZ by EB-PVD which has columnar structure. For 4YSZ by APS, such results are expected due to the sliding wear accompanied with local delamination of splats.

Effect of various MEA fabrication methods on the PEMFC durability testing at high and low humidity conditions (MEA 제조 방법에 따른 상대습도 변화가 PEMFC 내구성에 미치는 영향)

  • Kim, Kun-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.86.2-86.2
    • /
    • 2010
  • In order to improve polymer electrolyte membrane fuel cell (PEMFC) durability, the durability of membrane electrode assemblies (MEA), in which the electrochemical reactions actually occur, is one of the vital issues. Many articles have dealt with catalyst layer degradation of the durability-related factors on MEAs in relation to loss of catalyst surface area caused by agglomeration, dissolution, migration, formation of metal complexes and oxides, and/or instability of the carbon support. Degradation of catalyst layer during long-term operation includes cracking or delamination of the layer which result either from change in the catalyst microstructure or loss of electronic or ionic contact with the active surface, can result in apparent activity loss in the catalyst layer. Membrane degradation of the durability-related factors on MEAs can be caused by mechanical or thermal stress resulting in formation of pinholes and tears and/or by chemical attack of hydrogen peroxide radicals formed during the electrochemical reactions. All of these effects, the mechanical damage of membrane and degradation of catalyst layers are more facilitated by uneven stress or improper MEA fabrication process. In order to improve the PEMFC durability, therefore, it is most important to minimize the uneven stress or improper MEA fabrication process in the course of the fabrication of MEA. We analyzed the effects of the MEA fabrication condition on the PEMFC durability with MEA produced using CCM (catalyst coated membrane) method. This paper also investigated the effects of MEA fabrication condition on the PEMFC durability by adding additional treatment process, hot pressing and pressing, on the MEA produced using CCM method.

  • PDF

Interfacial Reaction between seal and metal interconnect and effets of protecting layer in planar type SOFC stack (평판형 SOFC 스택의 밀봉재와 금속 분리판의 계면반응 및 보호층 효과)

  • Moon, J.W.;Kim, Y.W.;Seong, B.K.;Kim, D.H.;Jun, J.H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.72.2-72.2
    • /
    • 2010
  • 평판형 고체산화물 연료전지 스택의 고온 밀봉 구조에 대하여 설명하고 스택 운전 후 사후 분석을 통하여 밀봉재와 금속 분리판의 계면반응에 대하여 고찰하였다. 대표적인 고온 밀봉재인 Barium-Silicate 계 결정화 유리와 Fe-Cr 계 금속 분리판은 스택의 작동온도인 $700{\sim}850^{\circ}C$ 에서 고온 반응을 통하여 계면에 반응생성물을 형성하는 것이 확인되었다. 이러한 계면반응은 장기 운전시 SOFC 스택 성능 저하의 원인이 되고, 열 싸이클(작동온도${\leftrightarrow}$상온)을 가하면 계면반응 생성물이 delamination 되어 밀봉구조가 파괴되어 수명을 단축시키게 된다. 계면반응은 Fe-Cr 계 금속 분리판의 산화물인 Cr 산화물, Fe 산화물이 밀봉유리 소재와 반응을 일으키는 것이 주요 원인으로 판명되었다. SOFC 스택에서 열 싸이클시 계면반응에 의하여 기밀도가 감소하는 현상이 확인되었으며, 밀봉 구조의 어느 부분에서 계면반응이 진행되는지 관찰하였다. 이러한 계면반응을 막기 위해서는 금속 분리판과 밀봉유리 사이에 계면반응을 억제하는 보호층을 형성하는 방법이 효과적이다. 본 연구에서는 보호층으로서 밀봉유리 및 Fe-Cr 계 금속 분리판과의 계면반응성이 낮고 열팽창 계수가 비슷한 Yttria Stabilized Zirconia 층을 APS(Atmospheric Plasma Spray) 공정을 이용하여 형성하였다. 밀봉유리/YSZ 보호층/금속분리판은 gas-tight 한 밀봉 구조를 형성하였으며, YSZ 보호층은 밀봉유리와 Fe-Cr 계 금속 분리판 소재와 계면반응을 효과적으로 억제하는 것이 확인되었다.

  • PDF

A Study on the Bonding Residual Thermal Stress Analysis of Dissimilar Materials Using Boundary Element Method (경계요소법에 의한 이종재료 접합 잔류열응력의 해석)

  • Yi, Won;Yu, Yeong-Chul;Jeong, Eui-Seob;Yun, In-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.4
    • /
    • pp.540-548
    • /
    • 1996
  • In general residual stress is measured by X-ray diffraction method but in case of bonding residual thermal stress it is inadequate technique to examine the stress singularity. Therefore Two-dimensional elastic boundary element analyses were carried out to investigate the residual thermal stress and stress singularity of bonding interface in Al/Epoxy. This boundary element results were compared with the strain gauge measurements. The effects of different interface models, sub-element and adherend thickness are presented and discussed. On the basis of the obtained results, interface delamination causing by normal stress is expected and stress singularity is observed more intensively increasing with adherend thickness. It is concluded that the bonding strength of Al/Epoxy interface can be estimated correctly by taking into account the stress singularity at the edge of the interface.

  • PDF

Cu Thickness Effects on Bonding Characteristics in Cu-Cu Direct Bonds (Cu 두께에 따른 Cu-Cu 열 압착 웨이퍼 접합부의 접합 특성 평가)

  • Kim, Jae-Won;Jeong, Myeong-Hyeok;Carmak, Erkan;Kim, Bioh;Matthias, Thorsten;Lee, Hak-Joo;Hyun, Seung-Min;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.61-66
    • /
    • 2010
  • Cu-Cu thermo-compression bonding process was successfully developed as functions of the deposited Cu thickness and $Ar+H_2$ forming gas annealing conditions before and after bonding step in order to find the low temperature bonding conditions of 3-D integrated technology where the interfacial toughness was measured by 4-point bending test. Pre-annealing with $Ar+H_2$ gas at $300^{\circ}C$ is effective to achieve enough interfacial adhesion energy irrespective of Cu film thickness. Successful Cu-Cu bonding process achieved in this study results in delamination at $Ta/SiO_2$ interface rather than Cu/Cu interface.

Performance of Melamine-Urea-Formaldehyde Resin Adhesives at Various Melamine Contents for Bonding Glued Laminated Timber Under High Frequency Heating

  • Hong, Min-Kug;Park, Byung-Dae;Kim, Keon-Ho;Shim, Kugbo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.409-418
    • /
    • 2017
  • This work attempted to manufacture glued-laminated timber (Glulam) bonded with melamine-urea-formaldehyde (MUF) resin adhesives at various melamine contents from 20% to 50% under high frequency (HF) heating for a very short time. Two preparation methods were employed to prepare MUF resin adhesives with different melamine contents: one-batch method of synthesizing MUF resins in a single batch, and two-batch method of mixing urea-formaldehyde (UF) resin with melamine-formaldehyde (MF) resin that had been synthesized separately. As the melamine content increased, the gelation time and peak temperature of MUF resins decreased. The adhesion performance of plywood showed that the one-batch MUF resin adhesive with 50% melamine content only satisfied the standard requirement of water resistance. Thus, the one-batch MUF resin adhesive with 50% melamine content was applied for bonding wood lamina from four softwood species such as Japanese larch, Korean red pine, Korean pine and Japanese cedar to manufacture Glulam under HF heating. All Glulam samples bonded with the one-batch MUF resin adhesives with 50% melamine content except those from Korean Red Pine satisfied the requirement in water soaking or boiling water delamination test as an exterior grade Glulam. The presence of rosin in Korean Red Pine was believed to be responsible for its poor adhesion. These results showed that the one-batch MUF resin adhesives with 50% melamine content provided acceptable water resistance with exterior grade Glulam manufactured under HF heating.