• 제목/요약/키워드: delamination monitoring

검색결과 45건 처리시간 0.033초

EPC method for delamination assessment of basalt FRP pipe: electrodes number effect

  • Altabey, Wael A.
    • Structural Monitoring and Maintenance
    • /
    • 제4권1호
    • /
    • pp.69-84
    • /
    • 2017
  • Delamination is the most common failure mode in layered composite materials. The author have found that the electrical potential change (EPC) technique using response surfaces method is very effective in assessment delamination in basalt fiber reinforced polymer (FRP) laminate composite pipe by using electrical capacitance sensor (ECS). In the present study, the effect of the electrodes number on the method is investigated using FEM analyses for delamination location/size detection by ANSYS and MATLAB, which are combined to simulate sensor characteristic. Three cases of electrodes number are analyzed here are eight, twelve and sixteen electrodes, afterwards, the delamination is introduced into between the three layers [$0^{\circ}/90^{\circ}/0^{\circ}$]s laminates pipe, split into eight, twelve and sixteen scenarios for cases of eight, twelve and sixteen electrodes respectively. Response surfaces are adopted as a tool for solving inverse problems to estimate delamination location/size from the measured EPC of all segments between electrodes. As a result, it was revealed that the estimation performances of delamination location/size depends on the electrodes number. For ECS, the high number of electrodes is required to obtain high estimation performances of delamination location/size. The illustrated results are in excellent agreement with solutions available in the literature, thus validating the accuracy and reliability of the proposed technique.

[0/90 0 ]s CFRP 복합재의 드릴작업손상과정 모니터링에 대한 AE의 적용 (The Application of AE for a Drilling Damage Process Monitoring in [0/90 0 ]s CFRP Composites)

  • 윤유성;권오헌
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1491-1498
    • /
    • 2000
  • In recent years, CFRP composite materials have been increasingly used in various fields of engineering because of a high specific strength and stiffness properties. Drilling is one of the most impo rtant cutting processes that are generally carried out on CFRP materials owing to the need for the structural integration. However, delamination are often occurred as one of the drilling damages. Therefore, there are needs studying for the relationships between CFRP drilling and delamination in order to avoid low strength of the structures and inaccuracies of the integration. In this study, AE signals and thrust forces were used for the evaluations of the delamination from a drilling process in [0/900]s CFRP materials. And the drilling damage processes were observed and measured by a real time monitoring technique with a video camera. From the results, we found that the relationships between the delamination from drilling and AE characteristics and drill thrust forces for [0/900]s CFRP composites. Also, we proposed the monitoring method for a visual analysis of drilling damages.

복합재료 평판의 헬스 모니터링 (Health Monitoring of Composite Plates)

  • 김당원;전흥재;이충희;변준형;엄문광
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.15-20
    • /
    • 2006
  • Real time health monitoring system was studied to detect the . generation of defects in the composite structures during service life. The PZT sensors were embedded into the woven-glass/phenol composite plate during the fabrication. VARTM (Vacuum Assisted Resin Transfer Molding) process were used to fabricate the composite plate. A Teflon tape was embedded between glass fiber layers to mimic delamination induced during service. Normalized maximum amplitude and energy analyses were used for the acquired signals. Both amplitude and energy of acquired signals were extremely sensitive to the delamination. Therefore, it was successful to detect and to locate the defects in composite plate by monitoring signals from sensors and using the proposed method.

  • PDF

Effect of Pressure on Edge Delamination in Chemical Mechanical Polishing of SU-8 Film on Silicon Wafer

  • Park, Sunjoon;Im, Seokyeon;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • 제33권6호
    • /
    • pp.282-287
    • /
    • 2017
  • SU-8 is an epoxy-type photoresist widely used for the fabrication of high-aspect-ratio (HAR) micro-structures in micro-electro-mechanical systems (MEMS). To fabricate highly integrated structures, chemical mechanical polishing (CMP) has emerged as the preferred manufacturing process for planarizing the MEMS structure. In SU-8 CMP, an oxidizer decomposes organic impurities and particles in the CMP slurry remove the chemically reacted surface of SU-8. To fabricate HAR microstructures using the CMP process, the adhesion between SU-8 and substrate material is important to avoid the delamination of the SU-8 film caused by the mechanical-dominant material removal characteristic. In this study, the friction force during the CMP process is measured with a CMP monitoring system to detect the delamination phenomenon and investigate the delamination of the SU-8 film from the silicon substrate under various pressure conditions. The increase in applied pressure causes an increase in the frictional force and wafer-edge stress concentration. The frictional force measurement shows that the friction force changes according to the delamination phenomenon of the SU-8 film, and that it is possible to monitor the delamination phenomenon during the SU-8 CMP process. The delamination at a high applied pressure is explained by the effect of stress distribution and pad deformation. Consequently, it is necessary to control the pressure of polishing, which can avoid the delamination in SU-8 CMP.

Nano-delamination monitoring of BFRP nano-pipes of electrical potential change with ANNs

  • Altabey, Wael A.;Noori, Mohammad;Alarjani, Ali;Zhao, Ying
    • Advances in nano research
    • /
    • 제9권1호
    • /
    • pp.1-13
    • /
    • 2020
  • In this work, the electrical potential (EP) technique with an artificial neural networks (ANNs) for monitoring of nanostructures are used for the first time. This study employs an expert system to identify size and localize hidden nano-delamination (N.Del) inside layers of nano-pipe (N.P) manufactured from Basalt Fiber Reinforced Polymer (BFRP) laminate composite by using low-cost monitoring method of electrical potential (EP) technique with an artificial neural networks (ANNs), which are combined to decrease detection effort to discern N.Del location/size inside the N.P layers, with high accuracy, simple and low-cost. The dielectric properties of the N.P material are measured before and after N.Del introduced using arrays of electrical contacts and the variation in capacitance values, capacitance change and node potential distribution are analyzed. Using these changes in electrical potential due to N.Del, a finite element (FE) simulation model for N.Del location/size detection is generated by ANSYS and MATLAB, which are combined to simulate sensor characteristic, therefore, FE analyses are employed to make sets of data for the learning of the ANNs. The method is applied for the N.Del monitoring, to minimize the number of FE analysis in order to keep the cost and save the time of the assessment to a minimum. The FE results are in excellent agreement with an ANN and the experimental results available in the literature, thus validating the accuracy and reliability of the proposed technique.

CFRP의 드릴작업시 AE적용에 의한 손상평가 (The Damage Evaluation for the Application of Acoustic Emission in a Drilling Procedure of the CFRP Composite Materials)

  • 최병국;윤유성
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.47-51
    • /
    • 2001
  • The carbon fiber reinforced plastics(CFRP) have been widely used in aircraft and spacecraft structures as well as sports goods because it has high specific strength, high specific stiffness and low coefficient of thermal expansion. Machining of CFRP poses problems not frequently seen for metals due to the nonhomogeneity, anisotropy, and abrasive characteristics of CFRP. Delamination is a common problem faced while drilling holes in CFRP using conventional drilling. Therefore, AE characteristics related to drilling damage process of unidirectional and [0/90/]s crossply laminate composite was studied. Also drilling damage like the delamination was observed by video camera in real time monitoring technique. From the results, we basically found the relationships between the delamination from drilling and AE characteristics for CFRP composites.

  • PDF

Monitoring degradation in concrete filled steel tubular sections using guided waves

  • Beena, Kumari;Shruti, Sharma;Sandeep, Sharma;Naveen, Kwatra
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.371-382
    • /
    • 2017
  • Concrete filled steel tubes are extensively applied in engineering structures due to their resistance to high tensile and compressive load and convenience in construction. But one major flaw, their vulnerability to environmental attack, can severely reduce the strength and life of these structures. Degradation due to corrosion of steel confining the concrete is one of the major durability problems faced by civil engineers to maintain these structures. The problem accelerates as inner surface of steel tube is in contact with concrete which serves as electrolyte. If it remains unnoticed, it further accelerates and can be catastrophic. This paper discusses a non-destructive degradation monitoring technique for early detection corrosion in steel tubes in CFST members. Due to corrosion, damage in the form of debonding and pitting occurs in steel sections. Guided ultrasonic waves have been used as a feasible and attractive solution for the detection and monitoring of corrosion damages in CFST sections. Guided waves have been utilized to monitor the effect of notch and debond defects in concrete filled steel tubes simulating pitting and delamination of steel tubes from surrounding concrete caused by corrosion. Pulse transmission has been used to monitor the healthy and simulated damaged specimens. A methodology is developed and successfully applied for the monitoring of concrete filled steel tubular sections undergoing accelerated chloride corrosion. The ultrasonic signals efficiently narrate the state of steel tube undergoing corrosion.

드릴작업중 발생되는 일방향 적층 CFRP 복합재료의 손상평가 및 AE특성 (The Damage Evaluation and Acoustic Emission Characteristics of the Unidirectional Ply CFRP Composite Materials in a Drilling Procedure)

  • 윤유성;권오헌
    • 동력기계공학회지
    • /
    • 제3권2호
    • /
    • pp.42-50
    • /
    • 1999
  • In recent years, composite materials like CFRP are increasingly used in various fields of engineering because of their unique properties which offer a high strength/density and high modulus/density. When CFRP structures are manufactured in drilling processes which are frequently practiced in an Industry, they bring on the delaminations sometimes. So, acoustic emission(AE) techniques were used for a condition monitoring of the drilling process in CFRP. In this study, the AE from CFRP estimated the delamination which reduces the strength and load carrying capacity under the drilling process and the initial delamination were well caught and measured by a video camera. From the results, it was found the relationships between failure mechanism of CFRP delamination and AE characteristics as like amplitude and count.

  • PDF

Damage detection in beams and plates using wavelet transforms

  • Rajasekaran, S.;Varghese, S.P.
    • Computers and Concrete
    • /
    • 제2권6호
    • /
    • pp.481-498
    • /
    • 2005
  • A wavelet based approach is proposed for structural damage detection in beams, plate and delamination of composite plates. Wavelet theory is applied here for crack identification of a beam element with a transverse on edge non-propagating open crack. Finite difference method was used for generating a general displacement equation for the cracked beam in the first example. In the second and third example, damage is detected from the deformed shape of a loaded simply supported plate applying the wavelet theory. Delamination in composite plate is identified using wavelet theory in the fourth example. The main concept used is the breaking down of the dynamic signal of a structural response into a series of local basis function called wavelets, so as to detect the special characteristics of the structure by scaling and transformation property of wavelets. In the light of the results obtained, limitations of the proposed method as well as suggestions for future work are presented. Results show great promise of wavelet approach for damage detection and structural health monitoring.

배열 압전 능동 센서를 이용한 볼트 구멍의 층간분리 탐지 (Delamination Detection at a Bolt Hole Using a Built-in Piezoelectric Active Sensor Array)

  • 박찬익;김민성
    • 한국항공우주학회지
    • /
    • 제36권6호
    • /
    • pp.550-557
    • /
    • 2008
  • 영구히 장착된 배열 압전 능동 센서를 사용하여 복합재 보강판의 볼트 구멍에 있는 층간분리 손상을 탐지하였다. 다양한 신호처리 기법을 사용하여 국부적인 수직하중에 의하여 발생한 볼트 구멍 주위의 눈에 보이지 않는 작은 층간분리를 탐지하였다. 배열 압전 센서를 사용하여 진단신호를 생성하였으며, 응답신호를 측정하였다. 응답신호를 신호 처리하여 손상에 민감한 특성들을 추출하였다. 이 특성들을 사용하여 손상 지수를 계산하였고, 손상 지수를 사용하여 손상의 유무와 위치를 추정하였다.