• Title/Summary/Keyword: delamination fracture

Search Result 176, Processing Time 0.023 seconds

Flexural strength properties of MoSi2 based composites (MoSi2 복합재료의 굽힘강도 특성)

  • Lee, Sang-Pill;Lee, Hyun-Uk;Lee, Jin-Kyung;Bae, Dong-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.66-71
    • /
    • 2011
  • The flexural strength of $MoSi_2$ based composites reinforced with Nb sheets has been investigated, based on the detailed examination of their microstructure and fractured surface. Both sintered density and porosity of Nb/$MoSi_2$ composites were also examined. Nb/$MoSi_2$ composites were fabricated by different conditions such as temperature, applied pressure and its holding time, using a hot-press device. The volume fraction of Nb sheet in this composite system was fixed as 10%. The characterization of Nb/$MoSi_2$ composites were investigated by means of optical microscopy, scanning electron microscope and three point bending test. Nb/$MoSi_2$ composites represented a dense morphology at the interfacial region, accompanying the creation of two types of reaction layer by the chemical reaction of Nb and $MoSi_2$. Nb/$MoSi_2$ composites possessed an excellent density at the fabricating temperature of $1350^{\circ}C$, corresponded to about 95% of theoretical density. The flexural strength of Nb/$MoSi_2$ romposites were greatly affected by the pressure holding time at the same fabricating temperature, owing to the large suppression of porosity in the microstructure. Especially, Nb/$MoSi_2$ composites represented a good flexural strength of about 310 MPa at the fabricating condition of $1350^{\circ}C$, 30MPa and 60min, accompanying the pseudo-ductile fracture behavior by the deformation of Nb sheet and the interfacial delamination.

Experimental Study on Interfacial Bond Stress between Aramid FRP Strips and Steel Plates (아라미드 FRP 스트립과 강판 사이의 계면 부착응력에 관한 실험적 연구)

  • Park, Jai Woo;Ryoo, Jae Yong;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.4
    • /
    • pp.359-370
    • /
    • 2015
  • This paper presents the experimental results for the interfacial bond behaviour between AFRP strip and steel members. The objective of this paper is to examine the interfacial behavior and to evaluate the interfacial bond stress between Aramid FRP strips and steel plates. The test variables were bond length and AFRP thickness. 18 specimens were fabricated and one-face shear type bond tests were conducted in this study. There were two types of failure mode which were debonding and delamination between AFRP strip and steel plates. From the test, the load was increased with the increasing of bond length and AFRP thickness, which was observed that maximum increase of 63 and 86% were also achieved in load with the increasing of bond length and AFRP thickness, respectively. Finally, bond and slip characteristics had the elastic bond-slip model and it was observed that bond strength and fracture energy were not affected by bond length and AFRP thickness.

An Experimental Study on the Shear Behavior of Reinforced Concrete Beams Strengthened with Slit Type Steel Plates (Slit형(形) 강판으로 보강(補强)한 철근콘크리트 보의 전단거동에 관한 실험연구)

  • Lee, Choon-Ho;Shim, Jong-Seok;Kwon, Ki-Hyuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.1-8
    • /
    • 2008
  • RC beam of existing structures often encounter shear problems for various reasons. The shear failure of RC beam is sudden and brittle. Strengthening technique jacketing with external bonding of steel plates(or CFRP and CFS) with epoxy is many use to in practice. This study presents test results on strengthening shear deficient RC beams by external bonding of slit type steel plates. Test parameters are width, interval, length, thickness and angle of slit in steel plates. The purpose was to evaluate the reinforcing effects, failure modes and shear capacities for RC beams of strengthened with various slit type steel plates. The test result confirmed that all slit steel plates improved the stiffness and strength of the specimens significantly. Failure modes of SV series and SD series showed shear fractures and flexure fractures at ultimate state respectively. SD series were ductile rather than SV series.

Determination of Elastic Work Factor of Graphite/Epoxy Composites Subjected to Compressive Loading under Hydrostatic Pressure Environment (정수압 환경에서 압축하중을 받는 Graphite/Epoxy 적층복합재의 탄성일인자 결정)

  • 신명근;이경엽;이중희
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.14-18
    • /
    • 2002
  • In the present study, we investigated the effects or hydrostatic pressure and stacking sequence on the elastic work factor to determine compressive fracture toughness of graphite/epoxy laminated composites in the hydrostatic pressure environment. The stacking sequences used were unidirectional. $\textrm{[}0^{\circ}\textrm{]}_{88}$ and multi-directional, $\textrm{[}0^{\circ}/\pm/45^{\circ}/90^{\circ}\textrm{]}_{11s}$. The hydrostatic pressures applied for a $\textrm{[}0^{\circ}\textrm{]}_{88}$ case were 0.1 MPa, 70MPa, 140MPa. and 200MPa. The hydrostatic pressures applied for a $\textrm{[}0^{\circ}/\pm/45^{\circ}/90^{\circ}\textrm{]}_{11s}$ case were 0.1MPa, 100MPa, 200MPa, and 300MPa. It was found that the elastic work factor was not affected by the hydrostatic pressure and the stacking sequence. Also, it was found that the elastic work factor decreased in a linear fashion with delamination length.

Prediction of Fatigue Life in 2 Ply Rubber/Cord Laminate (2층 고무/코드 적층판의 피로 수명 예측)

  • 임동진;이윤기;윤희석;김민호
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.9-17
    • /
    • 2003
  • In order to simulate the crack connection between cords and the interply crack growth in the belt-layer of real tire, 2 ply rubber/cord laminate specimens with exposed edges were tested in 4~11mm displacement control. Measurement of the crack connection is evaluated when crack reaches the half of the length between 45$^{\circ}$ aligned cords, and the amount of the crack growth is measured by the steel probe method. 2 dimensional analytic modeling was performed to simulate the crack connection between cords at the exposed edges. Also, the theoretical life of the specimens was calculated from the crack connection life between cords(critical value) and from the critical value to the final failure by the use of Tearing energy(T); the strain energy release per unit area of one fracture surface of a crack. Then, theoretical life was compared with those of experiments. The life prediction up to the critical value has about 20% error compared to experimental life, and up to the final failure about 65% error. Therefore, total theoretical life has about 45% error compared to the experimental life, which is conceivable in the case of rubber.

An Experimental Study on Shear Strengthening Effect of I-girder using Externally Bonded CFRP Strips (외부 부착 탄소섬유를 사용한 I형 보의 전단 보강 효과 연구)

  • Kim, Changhyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.108-113
    • /
    • 2018
  • Researches on strengthening and rehabilitation methods are being widely conducted due to the deterioration of existing concrete structures. Use of externally bonded Carbon Fiber Reinforced Polymers (CFRP) strips for the rehabilitation is a cost-effective and time-saving method. Generally, the CFRP layout for the shear strengthening was a uni-directional layout. Many researches have focused on the variables of the uni-directional CFRP layout such as the amount of material, angle, and spacing. Pilot tests indicated that the effective confinement of the concrete member can be provided with the bi-directional CFRP layout than the uni-directional layout. Therefore, the test was carried out after the uni- and bi-directional strengthening work using the same amount of CFRP material. CFRP anchors were installed to prevent unexpected premature CFRP delamination failure before reaching CFRP fracture strain. The effectiveness of the CFRP anchor and bi-directional CFRP layout for shear strengthening was verified based on the principal tensile strain contours.

Transverse cracking based numerical analysis and its effects on cross-ply laminates strength under thermo-mechanical degradation

  • Abdelatif, Berriah;Abdelkader, Megueni;Abdelkader, Lousdad
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1063-1077
    • /
    • 2016
  • Components manufactured from composite materials are frequently subjected to superimposed mechanical and thermal loadings during their operating service. Both types of loadings may cause fracture and failure of composite structures. When composite cross-ply laminates of type [$0_m/90_n]_s$ are subjected to uni-axial tensile loading, different types of damage are set-up and developed such as matrix cracking: transverse and longitudinal cracks, delamination between disoriented layers and broken fibers. The development of these modes of damage can be detrimental for the stiffness of the laminates. From the experimental point of view, transverse cracking is known as the first mode of damage. In this regard, the objective of the present paper is to investigate the effect of transverse cracking in cross-ply laminate under thermo-mechanical degradation. A Finite Element (FE) simulation of damage evolution in composite crossply laminates of type [$0_m/90_n]_s$ subjected to uni-axial tensile loading is carried out. The effect of transverse cracking on the cross-ply laminate strength under thermo-mechanical degradation is investigated numerically. The results obtained by prediction of the numerical model developed in this investigation demonstrate the influence of the transverse cracking on the bearing capacity and resistance to damage as well as its effects on the variation of the mechanical properties such as Young's modulus, Poisson's ratio and coefficient of thermal expansion. The results obtained are in good agreement with those predicted by the Shear-lag analytical model as well as with the obtained experimental results available in the literature.

Analysis of Crack characteristic on Concrete Cover for Subway Box Structure Due to Reinforcement Corrosion (철근부식으로 인한 지하철 박스구조물의 콘크리트 피복층 균열특성 분석)

  • Choi, Jung-Youl;Shin, Dong-Sub;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.727-732
    • /
    • 2022
  • Applying the calculated cross-sectional reduction due to the corroded rebar investigated in the field to the numerical analysis model, the damage pattern and delamination of concrete in the field showed a tendency relatively similar to the numerical analysis results. It was analyzed that when the expansion pressure due to corrosion of the reinforcing bar is greater than the tensile stress of the concrete, cracks are generated and the concrete cover can be fracture. As a result of this study, the correlation between the corrosion rate of reinforcing bars and the crack occurrence of the concrete cover of the subway box structure was verified based on the numerical analysis and field test results. To prevent rebar corrosion, the corrosion rate can be reduced by applying rust prevention to the reinforcing bar and changing the material. In the case of exposed to a corrosive environment, the tensile strength of the concrete is improved by adjusting the concrete compressive strength to secure durability against the expansion pressure caused by the corroded rebar.

A Study on Degradation and Recovery Mechanisms of Composites under the Moisture Environment (복합재료의 수분에 의한 열화 및 회복 메커니즘에 관한 연구)

  • Kim, Yun-Hae;Kim, Kook-Jin;Han, Joong-Won;Jo, Young-Dae;Bae, Sung-Youl;Moon, Kyoung-Man
    • Composites Research
    • /
    • v.21 no.2
    • /
    • pp.8-14
    • /
    • 2008
  • Decrease of strength in composite material is generally caused by water absorption. It makes fracture of material, and loss of money or human lives. The objective of this study is to investigate the causes of decrease in strength by water absorption. Mechanism of water absorption was supposed as three steps. This mechanism is consisted of absorption into resin, absorption between resin and surface treatment agent, and delamination between fiber and resin. Conditions of test were supplied differently; kinds of fiber and resin, immersion time etc. Both of reversible reaction and irreversible reaction occurred simultaneously. Most of decrease in strength was finished at 2.5% water absorption, and the strength was recovered. At 4% water absorption, most of decrease was caused by irreversible reaction, therefore, there was a tendency not to be recovered in strength.

Effect of Ta/Cu Film Stack Structures on the Interfacial Adhesion Energy for Advanced Interconnects (미세 배선 적용을 위한 Ta/Cu 적층 구조에 따른 계면접착에너지 평가 및 분석)

  • Son, Kirak;Kim, Sungtae;Kim, Cheol;Kim, Gahui;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.39-46
    • /
    • 2021
  • The quantitative measurement of interfacial adhesion energy (Gc) of multilayer thin films for Cu interconnects was investigated using a double cantilever beam (DCB) and 4-point bending (4-PB) test. In the case of a sample with Ta diffusion barrier applied, all Gc values measured by the DCB and 4-PB tests were higher than 5 J/㎡, which is the minimum criterion for Cu/low-k integration without delamination. However, in the case of the Ta/Cu sample, measured Gc value of the DCB test was lower than 5 J/㎡. All Gc values measured by the 4-PB test were higher than those of the DCB test. Measured Gc values increase with increasing phase angle, that is, 4-PB test higher than DCB test due to increasing plastic energy dissipation and roughness-related shielding effects, which matches well interfacial fracture mechanics theory. As a result of the 4-PB test, Ta/Cu and Cu/Ta interfaces measured Gc values were higher than 5 J/㎡, suggesting that Ta is considered to be applicable as a diffusion barrier and a capping layer for Cu interconnects. The 4-PB test method is recommended for quantitative adhesion energy measurement of the Cu interconnect interface because the thermal stress due to the difference in coefficient of thermal expansion and the delamination due to chemical mechanical polishing have a large effect of the mixing mode including shear stress.