• Title/Summary/Keyword: degradation reliability

Search Result 541, Processing Time 0.03 seconds

A Study on Reliability Analysis for Reliability Testing & Field Degradation Data of LED Lighting (LED조명기기의 필드 열화데이터에 대한 신뢰성 분석에 관한 연구)

  • Yang, Seong-Yong;Yi, Chin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.54-59
    • /
    • 2011
  • LED lightings typically do not fail catastrophically during use. However, over time the light output will gradually depreciate. Even if there are same LED lighting, they are so different at all. because of dissimilar the use and environment of each LED lighting. In this paper, we make a description of reliability analysis procedures for the degradation data using collected field data. Reliability analysis procedures are consisted of estimating degradation models and failure time, verification of distribution and parameters of the distribution, and reliability measures estimation. At some point in time, the light emitted from an LED lightings depreciates to a level where it is no longer considered adequate for a specific application.

A Study on Reliability Prediction of System with Degrading Performance Parameter (열화되는 성능 파라메터를 가지는 시스템의 신뢰성 예측에 관한 연구)

  • Kim, Yon Soo;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.142-148
    • /
    • 2015
  • Due to advancements in technology and manufacturing capability, it is not uncommon that life tests yield no or few failures at low stress levels. In these situations it is difficult to analyse lifetime data and make meaningful inferences about product or system reliability. For some products or systems whose performance characteristics degrade over time, a failure is said to have occurred when a performance characteristic crosses a critical threshold. The measurements of the degradation characteristic contain much useful and credible information about product or system reliability. Degradation measurements of the performance characteristics of an unfailed unit at different times can directly relate reliability measures to physical characteristics. Reliability prediction based on physical performance measures can be an efficient and alternative method to estimate for some highly reliable parts or systems. If the degradation process and the distance between the last measurement and a specified threshold can be established, the remaining useful life is predicted in advance. In turn, this prediction leads to just in time maintenance decision to protect systems. In this paper, we describe techniques for mapping product or system which has degrading performance parameter to the associated classical reliability measures in the performance domain. This paper described a general modeling and analysis procedure for reliability prediction based on one dominant degradation performance characteristic considering pseudo degradation performance life trend model. This pseudo degradation trend model is based on probability modeling of a failure mechanism degradation trend and comparison of a projected distribution to pre-defined critical soft failure point in time or cycle.

Analysis of Field Reliability Data with Supplementary Information on Degradation Data and Covariates (열화자료와 설명변수 정보를 고려한 사용현장 신뢰성 자료의 분석)

  • 서순근;하천수
    • Journal of Applied Reliability
    • /
    • v.2 no.2
    • /
    • pp.63-83
    • /
    • 2002
  • Degradation data can provide more reliability information than traditional failure-time data, especially products with few or no failures. This paper is concerned with a method of estimating lifetime distribution from field data with supplementary information on degradation data and covariates. When a distribution of degradation rate obtained by follow-up study for a portion of products that survive after-warranty follows a reciprocal-Weibull or lognormal distribution. A time-to-failure distribution of the product follows Weibull or lognormal distribution, respectively. A method of estimating lifetime parameters for this kind of data and their asymptotic properties are studied. Effects of after-warranty report probability, follow-up rate, and proportion of degradation data on pseudo maximum likelihood estimators of these parameters are investigated.

  • PDF

Comparison of Storage Lifetimes by Variance Assumption using Accelerated Degradation Test Data (파괴적 가속열화시험 데이터의 분산가정에 따른 수명비교)

  • Kim, Jonggyu;Back, Seungjun;Son, Youngkap;Park, Sanghyun;Lee, Moonho;Kang, Insik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.173-179
    • /
    • 2018
  • Estimating reliability of a non-repairable system using the degradation data, variance assumption such as homogeneity (constant) or heteroscedasticity (time-variant) could affect accuracy of reliability estimation. This paper showed reliability estimation and comparison results under normal conditions using accelerated degradation data obtained from destructive measurements, according to variance assumption of the data at each measurement time. Degradation data from three accelerated conditions with stress factors of temperature and humidity were used to estimate reliability. The $B_{10}$ lifetime was estimated as 1243.8 years by constant variance assumption, and 18.9 years by time-variant variance. And variance assumption provided different analysis results of important stresses to reliability. Thus, accurate assumption of variance at each measurement time is required when estimating reliability using degradation data of a non-repairable system.

Modeling and Analysis of Accelerated Degradation Testing Data for a Solid State Drive (SSD) (Solid State Drive(SSD)에 대한 가속열화시험 데이터 모델링 및 분석)

  • Mun, Byeong Min;Choi, Young Jin;Ji, You Min;Lee, Yong Jung;Lee, Keun Woo;Na, Han Joo;Yang, Joong Seob;Bae, Suk Joo
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.33-39
    • /
    • 2018
  • Purpose: Accelerated degradation tests can be effective in assessing product reliability when degradation leading to failure can be observed. This article proposes an accelerated degradation test model for highly reliable solid state drives (SSDs). Methods: We suggest a nonlinear mixed-effects (NLME) model to degradation data for SSDs. A Monte Carlo simulation is used to estimate lifetime distribution in accelerated degradation testing data. This simulation is performed by generating random samples from the assumed NLME model. Conclusion: We apply the proposed method to degradation data collected from SSDs. The derived power model is shown to be much better at fitting the degradation data than other existing models. Finally, the Monte Carlo simulation based on the NLME model provides reasonable results in lifetime estimation.

Storage Reliability Assessment of Springs for Turbo Engine Components (터보엔진 구성품용 스프링의 저장 신뢰성 평가)

  • Chang, Mu-Seong;Lee, Choong-Sung;Park, Jong-Won;Kim, You-Il;Kim, Sun Je
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.42-49
    • /
    • 2019
  • This paper presents a method to predict the storage reliability of springs for turbo engine components based on an accelerated degradation test. The reliability assessment procedure for springs is established to proceed with the accelerated degradation test. The spring constant is selected as the performance degradation characteristic, the temperature is determined to be the stress factor that deteriorates the spring constant. The storage tests are performed at three temperature test conditions. The spring constant is measured periodically to check the degradation status of the springs. Failure times of the springs are predicted by using the degradation model. Finally, the storage lifetime of the springs at normal use conditions is predicted using an accelerated model and failure times of all test conditions.

Basic Study of Degradation Test for Magnetic Contactors and Reliability Centered Maintenance

  • Ryu, Haeng-Soo;Han, Gyu-Hwan;Yoon, Nam-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.441-444
    • /
    • 2007
  • The mechanical endurance is the critical characteristic of Magnetic contactors (MCs), which are widely used in such industrial equipments as elevators, cranes, and factory control rooms in order to close and open the control circuit. Testing time, however, is so long in most cases that some method of reducing the testing period is required. Therefore, the degradation test by the detected vibration of MCs is developed to reduce the testing time in this work. The degradation test data are analyzed and the prediction model is provided. Also, the possibility of this technology for Reliability Centered Maintenance (RCM) will be shown. This will reduce the period of the product development and raise the reliability of the equipment in power distribution.

A Study on the Insulation Properties for Stator Form-wound Winding by Thermal Degradation Test (가속 열열화 시험에 의한 고정자 형권 코일의 절연특성에 관한 연구)

  • 채승훈;김상걸;오현석;신철기;왕종배;김기준;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.115-118
    • /
    • 2000
  • In case of developing new motor, many examinations was tested to decide a motor efficiency and reliability. To give reliability judgment, traction motor winding insulation was tested by electrical method after appling electrical, heat, mechanical, environmental stress. In this study, stator form-wound winding of traction motor in urban transit E.M.U was tested by accelerative thermal degradation test. Stator form-wound winding was tested on the accelerative degradation composed of heat, vibration, moisture, overvoltage and researched insulation resistance, dielectric loss, partial discharge for insulation degradation properties, evaluated withstand voltage. Degradation temperature was $230[^\circ{C}]$, $250[^\circ{C}]$, $270[^\circ{C}]$, for stator form-wound winding respectively. On the test results of accelerative thermal degradation, insulation properties were relied all temperature until 10 times and expected life was evaluated by the rule of reducing $10[^\circ{C}]$ life into halves. Expected life was 31.8 years. It is guaranteed insulation reliability because of exceeding 25 years life times as considering.

  • PDF

Thermal Degradation Behavior and Reliability Analysis of Plastic Materials for Household Electric Appliances (가전제품용 플라스틱 재료의 열분해 거동 및 신뢰성 평가)

  • Im, Chang-Gyu;Kim, Jun-Young;Kim, Seong-Hun
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.508-517
    • /
    • 2005
  • The thermal degradation behavior and reliability analysis were investigated using dynamic thermogravimetric analysis (TGA) and accelerated degradation test (ADT) to characterize the dynamic parameters related to thermal degradation of plastic meterials for household electric appliances. In addition, the weathering of the plastic were performed by ADT using Xenon uc, and the color difference of the samples after ADT were measured with Color Eye 3010 specoophotometer. he activation energy for thermal degradation of the samples increased with increasing the rate of weight loss. The Kim-Park method was found to be more effective analysis in describing thermal degradation of plastic meterials. Plastic materials were very sensitive to ultra-violet rays in faster degradation.

Analysis of faust cause & insulation degradation on the electrical equipments for railway (철도용 전기기기의 고장요인 및 절연열화 분석)

  • 왕종배;전한준;박옥정;온정근
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.207-210
    • /
    • 2001
  • Electrical equipment for railway is always experiencing wear and degradation by mechanical, electrical and environmental stress in service and the fault or the accident of high voltage main circuit directly causes operation interruption. Particularly propulsion drive of high speed switching inverter takes the form of specific degradation mechanism such as fast rising transient surge, reflective overvoltage and harmonic stress, and it is known that it threatens the long life and the reliability of electrical equipment. In this paper, statistics of fault and accident on main electrical equipment for railway are presented and also insulation degradation mechanism, which governs end life of electrical device, is analyzed. Finally the method of fault respondence and reliability improvement on the main electrical equipments will be reviewed in order to prevent operation interruption.

  • PDF