• Title/Summary/Keyword: degradation pathway

Search Result 432, Processing Time 0.032 seconds

Isolation of a Pseudomonas sp. Capable of Utilizing 4-Nonylphenol in the Presence of Phenol

  • Chakraborty Joydeep;Dutta Tapan K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1740-1746
    • /
    • 2006
  • Enrichment techniques led to the isolation of a Pseudomonas sp. strain P2 from municipal waste-contaminated soil sample, which could utilize different isomers of a commercial mixture of 4-nonylphenol when grown in the presence of phenol. The isolate was identified as Pseudomonas sp., based on the morphological, nutritional, and biochemical characteristics and 16S rDNA sequence analysis. The ${\beta}$-ketoadipate pathway was found to be involved in the degradation of phenol by Pseudomonas sp. strain P2. Gas chromatography-mass spectrometric analysis of the culture media indicated degradation of various major isomers of 4-nonylphenol in the range of 29-50%. However, the selected ion monitoring mode of analysis of biodegraded products of 4-nonylphenol indicated the absence of any aromatic compounds other than those of the isomers of 4-nonylphenol. Moreover, Pseudomonas sp. strain P2 was incapable of utilizing various alkanes individually as sole carbon source, whereas the degradation of 4-nonylphenol was observed only when the test organism was induced with phenol, suggesting that the degradation of 4-nonylphenol was possibly initiated from the phenolic moiety of the molecule, but not from the alkyl side-chain.

Genome Analysis of Naphthalene-Degrading Pseudomonas sp. AS1 Harboring the Megaplasmid pAS1

  • Kim, Jisun;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.330-337
    • /
    • 2018
  • Polycyclic aromatic hydrocarbons (PAHs), including naphthalene, are widely distributed in nature. Naphthalene has been regarded as a model PAH compound for investigating the mechanisms of bacterial PAH biodegradation. Pseudomonas sp. AS1 isolated from an arseniccontaminated site is capable of growing on various aromatic compounds such as naphthalene, salicylate, and catechol, but not on gentisate. The genome of strain AS1 consists of a 6,126,864 bp circular chromosome and the 81,841 bp circular plasmid pAS1. Pseudomonas sp. AS1 has multiple dioxygenases and related enzymes involved in the degradation of aromatic compounds, which might contribute to the metabolic versatility of this isolate. The pAS1 plasmid exhibits extremely high similarity in size and sequences to the well-known naphthalene-degrading plasmid pDTG1 in Pseudomonas putida strain NCIB 9816-4. Two gene clusters involved in the naphthalene degradation pathway were identified on pAS1. The expression of several nah genes on the plasmid was upregulated by more than 2-fold when naphthalene was used as a sole carbon source. Strains have been isolated at different times and places with different characteristics, but similar genes involved in the degradation of aromatic compounds have been identified on their plasmids, which suggests that the transmissibility of the plasmids might play an important role in the adaptation of the microorganisms to mineralize the compounds.

Biodegradation of Feather Waste Keratin by the Keratin-Degrading Strain Bacillus subtilis 8

  • He, Zhoufeng;Sun, Rong;Tang, Zizhong;Bu, Tongliang;Wu, Qi;Li, Chenlei;Chen, Hui
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.314-322
    • /
    • 2018
  • Bacillus subtilis 8 is highly efficient at degrading feather keratin. We observed integrated feather degradation over the course of 48 h in basic culture medium while studying the entire process with scanning electron microscopy. Large amounts of ammonia, sulfite, and $\text\tiny{L}$-cysteic acid were detected in the fermented liquid. In addition, four enzymes (gamma-glutamyltranspeptidase, peptidase T, serine protease, and cystathionine gamma-synthase) were identified that play an important role in this degradation pathway, all of which were verified with molecular cloning and prokaryotic expression. To the best of our knowledge, this report is the first to demonstrate that cystathionine gamma-synthase secreted by B. subtilis 8 is involved in the decomposition of feather keratin. This study provides new data characterizing the molecular mechanism of feather degradation by bacteria, as well as potential guidance for future industrial utilization of waste keratin.

Characterization of a Newly Isolated cis-1,2-Dichloroethylene and Aliphatic Compound-Degrading Bacterium, Clostridium sp. Strain KYT-1

  • Kim, Eun-Sook;Nomura, lzumi;Hasegawa, Yuki;Takamizawa, Kazuhiro
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.553-556
    • /
    • 2006
  • A cis-1,2-dichloroethylene (cis-DCE)-degrading anaerobic bacterium, Clostridium sp. strain KYT-1, was isolated from a sediment sample collected from a landfill site in Nanji-do, Seoul, Korea. The KYT-1 strain is a gram-positive, endospore-forming, motile, rod-shaped anaerobic bacterium, of approximately $2.5{\sim}3.0\;{\mu}m$ in length. The degradation of cis-DCE is closely related with the growth of the KYT-1 strain, and it was stopped when the growth of the KYT-1 strain became constant. Although the pathway of cis-DCE degradation by strain KYT-1 remains to be further elucidated, no accumulation of the harmful intermediate, vinyl chloride (VC), was observed during anaerobic cis-DCE degradation. Strain KYT-1 proved able to degrade a variety of volatile organic compounds, including VC, isomers of DCE (1,1-dichloroethylene, trans-1,2-dichloroethylene, and cis-DCE), trichloroethylene, tetrachloroethylene, 1,2-dichloroethane, 1,1,1-trichloroethane, and 1,1,2-trichloroethane. Strain KYT-1 degraded cis-DCE at a range of temperatures from $15\;to\;37^{\circ}C$, with an optimum at $30^{\circ}C$, and at a pH range of 5.5 to 8.5, with an optimum at 7.0.

Degradation of a Refractory Organic Contaminant by Photocatalytic Systems

  • Kim, Il-Kyu
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.133-139
    • /
    • 2014
  • In this research, the photocatalytic degradation of benzothiophene in $TiO_2$ aqueous suspension has been studied. $TiO_2$ photocatalysts are prepared by a sol-gel method. The dominant anatase-structure on $TiO_2$ particles is observed after calcining the $TiO_2$ gel at $500^{\circ}C$ for 1hr. Photocatalysts with various transition metals (Nd, Pd and Pt) loading are tested to evaluate the effect of transition metal impurities on photodegradation. The photocatalytic degradation in most cases follows first-order kinetics. The maximum photodegradation efficiency is obtained with $TiO_2$ dosage of 0.4g/L. The photodegradation efficiency with Pt-$TiO_2$ is higher than pure $TiO_2$ powder. The optimal content value of Pt is 0.5wt.%. Also we investigate the applicability of $H_2O_2$ to increase the efficiency of the $TiO_2$ photocatalytic degradation of benzothiophene. The optimal concentration of $H_2O_2$ is 0.05. The effect of pH is investigated; we obtain the maximum photodegradation efficiency at pH 9. Hydroxy-benzothiophenes and dihydroxy-benzothiophenes are identified as reaction intermediates. It is proposed that benzothiophene is oxidized by OH radical to sequentially form hydroxyl-benzothiophenes, dihydroxybenzothiophenes, and benzothiophenedione.

Clostridium difficile Toxin A Inhibits Wnt Signaling Pathway in Gut Epithelial Cells (대장상피세포 속 Wnt 신호 경로에 대한 C. difficile 톡신A의 영향)

  • Yoon, I Na;Kim, Ho
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1016-1021
    • /
    • 2018
  • Clostridium difficile toxin A causes pseudomembranous colitis. The pathogenesis of toxin A-induced colonic inflammation includes toxin A-dependent epithelial cell apoptosis, resulting in the loss of barrier function provided by epithelial cells against luminal pathogens. Toxin A-dependent epithelial cell apoptosis has been linked to toxin A-induced production of reaction oxygen species and subsequent p38MAPK activation; $p21^{CIP1/WAF1}$ upregulation-dependent cell cycle arrest; cytoskeletal disaggregation; and/or the induction of Fas ligand on epithelial cells. However, the molecular mechanisms underlying toxin A-induced apoptosis remain poorly understood. This study tested whether toxin A could block the Wnt signaling pathway, which is involved in gut epithelial cell proliferation, differentiation and antiapoptotic progression. Toxin A treatment of nontransformed human colonocytes (NCM460) rapidly reduced ${\beta}$-catenin protein, an essential component of the Wnt signaling pathway. Exposure of mouse ileum to toxin A also significantly reduced ${\beta}$-catenin protein levels. MG132 inhibition of proteasome-dependent protein degradation resulted in the recovery of toxin A-mediated reduction of ${\beta}$-catenin, indicating that toxin A may activate intracellular processes, such as $GSK3{\beta}$, to promote degradation of ${\beta}$-catenin. Immunoblot analysis showed that toxin A increased active phosphorylation of $GSK3{\beta}$. Because the Wnt signaling pathway is essential for gut epithelial cell proliferation and anti-apoptotic processes, our results suggest that toxin A-mediated inhibition of the Wnt signaling pathway may be required for maximal toxin A-induced apoptosis of gut epithelial cells.

Enhanced Production of Fatty Acids via Redirection of Carbon Flux in Marine Microalga Tetraselmis sp.

  • Han, Mi-Ae;Hong, Seong-Joo;Kim, Z-Hun;Cho, Byung-Kwan;Lee, Hookeun;Choi, Hyung-Kyoon;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.267-274
    • /
    • 2018
  • Lipids in microalgae are energy-rich compounds and considered as an attractive feedstock for biodiesel production. To redirect carbon flux from competing pathways to the fatty acid synthesis pathway of Tetraselmis sp., we used three types of chemical inhibitors that can block the starch synthesis pathway or photorespiration, under nitrogen-sufficient and nitrogen-deficient conditions. The starch synthesis pathway in chloroplasts and the cytosol can be inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and 1,2-cyclohexane diamine tetraacetic acid (CDTA), respectively. Degradation of glycine into ammonia during photorespiration was blocked by aminooxyacetate (AOA) to maintain biomass concentration. Inhibition of starch synthesis pathways in the cytosol by CDTA increased fatty acid productivity by 27% under nitrogen deficiency, whereas the blocking of photorespiration in mitochondria by AOA was increased by 35% under nitrogen-sufficient conditions. The results of this study indicate that blocking starch or photorespiration pathways may redirect the carbon flux to fatty acid synthesis.

Photocatalytic Degradation Mechanism of Methyl Mercaptan using $TiO_2$ (TiO$_2$를 이용한 메틸메르캅탄의 광촉매 분해메커니즘)

  • Lee, Byung-Dae;Lee, Jin-Shik;Kim, Yeoung-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.296-300
    • /
    • 2007
  • This paper presents applicability of photocatalytic decomposition of methyl mercaptan using $TiO_2$. A quartz reactor was used in order to elucidate reaction pathway in photocatalytic decomposition of methyl mercaptan. Experimental results showed that more than 99.9% of methyl mercaptan was decomposed within 30 minutes. It was found that the photocatalytic decomposition of methyl mercaptan followed pseudo first order and its reaction coefficient was $0.05min^{-1}$ During 30 minutes in the photocatalytic reaction, the concentration of methyl mercaptan, dimethyl disulfide, $SO_2$, $H_2SO_4$, COS, $H_2S$ were determined. These results showed that 64% of methyl mercaptan were compensated for the increase in sulfur after 30 minutes through the mineralization. The proposed main photocatalytic decomposition pathway of methyl mercaptan was methyl $mercaptan{\rightarrow}dimethyl$ $disulfide{\rightarrow}SO_2{\rightarrow}H_2SO_4$.

Isolation and Identification of an Autophagy-inducing Compound from Raphani Semen

  • Gu, Ming-Yao;Kwon, Hak Cheol;Song, Min Ok;Ko, Hyeonseok;Cha, Jin-Wook;Lee, Won Jong;Yang, Hyun Ok
    • Natural Product Sciences
    • /
    • v.19 no.3
    • /
    • pp.242-250
    • /
    • 2013
  • The autophagy-lysosomal pathway is an important protein degradation system, and its dysfunction has been implicated in a number of neurodegenerative diseases, including Parkinson's disease. Raphani Semen, one of the herbs of Yeoldahanso-tang (YH), has neuroprotective effects via the autophagy pathway. The activity-guided method was used to isolate and identify the components of Raphani Semen. In this experiment, the total extract of Raphani Semen was partitioned to n-butanol, methylene chloride, and water fractions. Flow cytometry data showed that only the water fraction showed autophagy-inducing activity in vitro. Compounds 1 and 2 were isolated from this water fraction by preparative HPLC separation. The structures of compounds 1 and 2 were identified as stachyose and raffinose, respectively, by the analysis of various spectral data ($^1H$ NMR, $^{13}C$ NMR, and MS) and comparisons with standard stachyose and raffinose. Of these two compounds, raffinose showed autophagy-inducing activity in PC12 cells through the mTOR pathway.

Deubiquitinase YOD1: the potent activator of YAP in hepatomegaly and liver cancer

  • Kim, Youngeun;Jho, Eek-hoon
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.281-282
    • /
    • 2017
  • Advances in the understanding of the Hippo signaling as a key regulatory pathway of proliferation and apoptosis have provided mechanical insights for controlling organ size and tumorigenicity. Recently, much attention has been directed to the regulation of LATS1/2 (large tumor suppressor) kinases that phosphorylate YAP/TAZ, a transcriptional co-activator in the Hippo pathway, and control the level and nuclear localization of YAP/TAZ. In our recent work, we showed that deubiquitinase YOD1 stabilizes ITCH, and facilitates ITCH-mediated LATS1/2 ubiquitination and degradation, resulting in increased YAP/TAZ level. Furthermore, we found that the YOD1-ITCH-LATS1/2-YAP/TAZ signaling axis is controlled by the differential expression of miR-21 in a cell-density-dependent manner. Using a transgenic mouse model, we showed that the inducible expression of YOD1 enhances the proliferation of hepatocytes and leads to hepatomegaly in a YAP/TAZ-activity-dependent manner. Moreover, a strong correlation was observed between YOD1 and YAP expression in liver cancer patients. Overall, our data suggest that YOD1 is a novel regulator of the Hippo pathway, and thereby a potential therapeutic target for liver cancer.