• 제목/요약/키워드: degradation mechanism

검색결과 974건 처리시간 0.025초

S-RCAT (Spherical Recess Cell Allay Transistor) 구조에 따른 FN Stress 특성 열화에 관한 연구 (The Research of FN Stress Property Degradation According to S-RCAT Structure)

  • 이동인;이성영;노용한
    • 전기학회논문지
    • /
    • 제56권9호
    • /
    • pp.1614-1618
    • /
    • 2007
  • We have demonstrated the experimental results to obtain the immunity of FN (Fowler Nordheim) stress for S-RCAT (Spherical-Recess Cell Array Transistor) which has been employed to meet the requirements of data retention time and propagation delay time for sub-100-nm mobile DRAM (Dynamic Random Access Memory). Despite of the same S-RCAT structure, the immunity of FN stress of S-RCAT depends on the process condition of gate oxidation. The S-RCAT using DPN (decoupled plasma nitridation) process showed the different degradation of device properties after FN stress. This paper gives the mechanism of FN-stress degradation of S-RCAT and introduces the improved process to suppress the FN-stress degradation of mobile DRAM.

초음파 비선형성을 이용한 2.25Cr-1Mo 강의 열화도 평가 (Evaluation of Degradation of 2.25Cr-1Mo Materials using the Nonlinear Acoustic Effect)

  • 최윤호;김현묵;장경영;박익근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.222-227
    • /
    • 2001
  • Nonlinear acoustic effect has been considered as an effective tool for the evaluation of material degradation. In this paper, the applicability of nonlinear acoustic effect to the evaluation of degradation of 2.25Cr-1Mo steel is investigated. Firstly, a number of 2.25Cr-1Mo steel samples were heat-treated, and their damage mechanism was examined. Secondly, Ultrasonic nonlinear parameter was measured. Nonlinear acoustic parameter was found to be clearly sensitive to the material degradation.

  • PDF

자외선 조사에 따른 태양전지 보호용 EVA의 열화 (The degradation of EVA for the protection of solar cell by UV-rays irradiation)

  • 김규조;연복희;김승환;김완태;허창수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.177-180
    • /
    • 2000
  • We studied the degradation of EVA for the protection of solar cell by UV-rays irradiation. We investigated the reduction of electrical efficiency, photo transmmitance and degradation of EVA by UV-rays irradiation. We utilized the UV irradiation equiped with fluorescent 313nm UV lamp and radiated for 400 hours. For the chemial analysis, we used the UV-vis spectrometer, XPS and examined the degradation mechanism by UV irradiation. It is found that the discolored phenomena, the decrease of photo transmmitance and oxidation reaction is occured by UV irradiation on the EVA sample for the protection of solar cell.

  • PDF

Synthesis of New Biodegradable Crosslinked Polyesters for Biomedical Applcations and Their In-Vitro Degradation

  • 한양규;강태곤;주충열;김응렬;임승순
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권6호
    • /
    • pp.680-685
    • /
    • 1998
  • Two kinds of new aliphatic diols were synthesized by the ring-opening reaction of lactide and glycolide with 1,4-butanediol, a difunctional initiator, in the presence of stannous octoate. The resulting aliphatic diols were melt-polymerized with D-tartaric acid at 150 ℃ to produce new crosslinkable polyesters. They were reacted with hexamethylene diisocyanate in THF at 65 ℃ in a teflon mold for 24 h to prepare sequentially ordered crosslinked polyesters (BD/LT/GL/D-tartarate). Degradation of the prepared yellow crosslinked films was carried out in a buffer solution in order to examine the effect of time, pH, temperature and crosslinking degree on their degradation rate and mechanism. The rate of degradation increased with an increase in pH and temperature, but it decreased with increasing degree of crosslinkage incorporated into the crosslinked polyesters. We also found that the crosslinked polymers were converted into the acidic compounds such as lactic, glycolic, and D-tartaric acids during the degradation.

Kinetics of di-n-Butyl Phthalate Degradation by a Bacterium Isolated from Mangrove Sediment

  • XU XIANG-RONG;GU JI-DONG;LI HUA-BIN;LI XIAO-YAN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.946-951
    • /
    • 2005
  • Biodegradation of the endocrine-disrupting chemical di-n-butyl phthalate (DBP) was investigated using a bacterium, Pseudomonas fluorescens B-1, isolated from mangrove sediment. The effects of temperature, pH, salinity, and oxygen availability on DBP degradation were studied. Degradation of DBP was monitored by solid-phase extraction using reversed-phase HPLC and UV detection. The major metabolites of DBP degradation were identified as mono-n-butyl phthalate and phthalic acid by gas chromatography-mass spectrometry (GC-MS) and a pathway of degradation was proposed. Degradation by P. fluorescens B-1 conformed to first-order kinetics. Degradation of DBP was also tested in seawater by inoculating P. fluorescens B-1, and complete degradation of an initial concentration of $100{\mu}g/l$ was achieved in 144 h. These results suggest that DBP is readily degraded by bacteria in natural environments.

Rapid Fenton-like degradation of methyl orange by ultrasonically dispersed nano-metallic particles

  • Singh, Jiwan;Chang, Yoon-Young;Koduru, Janardhan Reddy;Yang, Jae-Kyu;Singh, Devendra Pratap
    • Environmental Engineering Research
    • /
    • 제22권3호
    • /
    • pp.245-254
    • /
    • 2017
  • This study investigates methyl orange (MO) degradation by an ultrasonically dispersed nano-metallic particle (NMP) assisted advanced Fenton process. The NMPs were synthesized from the leachate of automobile-shredder residue. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy were performed for the prepared NMPs. Various parameters, such as the effects of the NMP dosage, the pH value of the solution, the initial concentration of MO, and the amount of $H_2O_2$ on the degradation efficiency of MO were studied. The MO degradation efficiency could be increased by approximately 100% by increasing the dosages of the NMPs and $H_2O_2$ to certain limits, after which in both cases the degradation efficiency was reduced when an excess amount was added. The MO degradation efficiency was found to be 100% at pH 2.0 and 2.5 with the 10 mg/L of initial concentration of the MO. The degradation of MO by ultrasonically dispersed NMPs was appropriate with the pseudo-first-order kinetics.

Hot carrier에 의한 RF NMOSFET의 성능저하에 관한 연구 (A study on the hot carrier induced performance degradation of RF NMOSFET′s)

  • 김동욱;유종근;유현규;박종태
    • 전자공학회논문지D
    • /
    • 제35D권10호
    • /
    • pp.60-66
    • /
    • 1998
  • Hot carrier 현상으로 인한 0.8㎛ RF NMOSFET의 성능저하 현상을 일반적인 소자 열화 메커니즘을 이용하여 분석하였다. 게이트 finger가 하나인 기존의 소자 열화 모델을 게이트가 multi finger인 RF NMOSFET에 적용할 수 있었다. Hot carrier 스트레스 후의 차단 주파수와 최대 주파수 감소 현상은 transconductance 감소와 출력 드레인 전도도의 증가로 해석할 수 있었다. Hot carrier로 인한 DC 특성 열화와 RF 특성 열화의 상관관계를 구하였으며 이를 이용하여 DC 특성 열화를 측정하므로 RF 특성 열화를 예측할 수 있게 되었다.

  • PDF

Silymarin-Mediated Degradation of c-Myc Contributes to the Inhibition of Cell Proliferation in Human Colorectal Cancer Cells

  • Eo, Hyun Ji;Jeong, Jin Boo;Koo, Jin Suk;Jeong, Hyung Jin
    • 한국자원식물학회지
    • /
    • 제30권3호
    • /
    • pp.265-271
    • /
    • 2017
  • In this study, we elucidated the molecular mechanism of silymarin by which silymarin may inhibits cell proliferation in human colorectal cancer cells in order to search the new potential anti-cancer target associated with the cell growth arrest. Silymarin reduced the level of c-Myc protein but not mRNA level indicating that silymarin-mediated downregulation of c-Myc may result from the proteasomal degradation. In the confirmation of silymarin-mediated c-Myc degradation, MG132 as a proteasome inhibitor attenuated c-Myc degradation by silymarin. In addition, silymarin phosphorylated the threonine-58 (Thr58) of c-Myc and the point mutation of Thr58 to alanine blocked its degradation by silymarin, which indicates that Thr58 phosphorylation may be an important modification for silymarin-mediated c-Myc degradation. We observed that the inhibition of ERK1/2, p38 and $GSK3{\beta}$ blocked the Thr58 phosphorylation and subsequent c-Myc degradation by silymarin. Finally, the point mutation of Thr58 to alanine attenuated silymarin-mediated inhibition of the cell growth. The results suggest that silymarin induces the cell growth arrest through c-Myc proteasomal degradation via ERK1/2, p38 and $GSK3{\beta}-dependent$ Thr58 phosphorylation.

분위기 소결공정에 의해 제조된 ZnO 세라믹 바리스터의 열화기구 연구 (A Study on the Degradation Mechanism of ZnO Ceramic Varistor Manufactured by Ambient Sintering-Process)

  • 소순진;김영진;박춘배
    • 한국전기전자재료학회논문지
    • /
    • 제13권5호
    • /
    • pp.383-389
    • /
    • 2000
  • The relationship between the DC degradation characteristics of the ZnO varistor and the ambient sintering-process is investigated in this study. ZnO varistors made o matsuoka’s composition were fabricated by standard ceramic techniques. The ambient sintering-process is performed at the extraordinary electrical-furnace which is equipped with the vacuum system. Gases used in sintering process were oxygen nitrogen argon and air. Using XRD and SEM the phase and microstructure of samples were analyzed respectively. The conditions of DC degradation tests were conducted at 115$\pm$2$^{\circ}C$ for 13 h. Current-voltage analysis is used to determine nonlinear coefficients($\alpha$). Frequency analysis are performed to understand electrical properties as DC degradation test. From above analysis it is found that the ZnO varistor sintered in oxygen atmosphere showed superior properties at the DC degradation test and degradation phenomenon of ZnO varistor is caused by the change of electrical properties in grain boundary. These results are in accordance with Gupta’s degradation model.

  • PDF