Browse > Article

Kinetics of di-n-Butyl Phthalate Degradation by a Bacterium Isolated from Mangrove Sediment  

XU XIANG-RONG (Laboratory of Environmental Toxicology, Department of Ecology & Biodiversity, The University of Hong Kong)
GU JI-DONG (Laboratory of Environmental Toxicology, Department of Ecology & Biodiversity, The University of Hong Kong, The Swire Institute of Marine Science, The University of Hong Kong)
LI HUA-BIN (Laboratory of Environmental Toxicology, Department of Ecology & Biodiversity, The University of Hong Kong)
LI XIAO-YAN (Laboratory of Environmental Engineering, Department of Civil Engineering, The University of Hong Kong)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.5, 2005 , pp. 946-951 More about this Journal
Abstract
Biodegradation of the endocrine-disrupting chemical di-n-butyl phthalate (DBP) was investigated using a bacterium, Pseudomonas fluorescens B-1, isolated from mangrove sediment. The effects of temperature, pH, salinity, and oxygen availability on DBP degradation were studied. Degradation of DBP was monitored by solid-phase extraction using reversed-phase HPLC and UV detection. The major metabolites of DBP degradation were identified as mono-n-butyl phthalate and phthalic acid by gas chromatography-mass spectrometry (GC-MS) and a pathway of degradation was proposed. Degradation by P. fluorescens B-1 conformed to first-order kinetics. Degradation of DBP was also tested in seawater by inoculating P. fluorescens B-1, and complete degradation of an initial concentration of $100{\mu}g/l$ was achieved in 144 h. These results suggest that DBP is readily degraded by bacteria in natural environments.
Keywords
Biodegradation; phthalates; di-n-butyl phthalate; kinetics; mechanism;
Citations & Related Records

Times Cited By Web Of Science : 15  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Giam, O. S., H. S. Chan, G. S. Nett, and E. L. Atlas. 1978. Phthalate ester plasticizers: A new class of marine pollutant. Science 199: 419-421   DOI
2 Kim, Y. H., J. Lee, J. Y. Ahn, M. B. Gu, and S. H. Moon. 2002. Enhanced degradation of an endocrine-disrupting chemical, butyl benzyl phthalate, by Fusarium oxysporum f. sp. pisi cutinase. Appl. Environ. Microbiol. 68: 4684-4688   DOI   ScienceOn
3 Picard, K., J. C. Lhuguenot, M. C. Lavier-Canivenc, and M. C. Chagnon. 2001. Estrogenic activity and metabolism of n-butyl benzyl phthalate in vitro: Identification of the active molecule(s). Toxicol. Appl. Pharmacol. 172: 108-118   DOI   ScienceOn
4 Staple, A. C., D. R. Peterson, T. H. Parkerton, and W. J. Adams. 1997. The environmental fate of phthalic esters: A literature review. Chemosphere 35: 667-749   DOI   ScienceOn
5 Wang J. L., P. Liu, H. C. Shi, and Y. Qian. 1997. Biodegradation of phthalic acid ester in soil by indigenous and introduced microorganisms. Chemosphere 35: 1747-1754   DOI   ScienceOn
6 Wang, Y., Y. Fan, and J.-D. Qu. 2003. Microbial degradation of the endocrine-disrupting chemicals phthalic acid and dimethyl phthalate ester under aerobic conditions. Bull. Environ. Contam. Toxicol. 71: 810-818   DOI   ScienceOn
7 Vega, D. and J. Bastide. 2003. Dimethylphthalate hydrolysis by specific microbial esterase. Chemosphere 51: 663-668   DOI   ScienceOn
8 Wang, Y., Y. Fan, and J.-D. Qu. 2003. Aerobic degradation of phthalic acid by Comamonas acidovoran Fy-1 and dimethyl phthalate ester by two reconstituted consortia from sewage sludge at high concentrations. World J. Microbiol. Biotechnol. 19: 811-815   DOI   ScienceOn
9 Chatterjee, S. and T. K. Dutta. 2003. Metabolism of butyl benzyl phthalate by Gordonia sp. strain MTCC 4818. Biochem. Biophys. Res. Commun. 309: 36-43   DOI   ScienceOn
10 Eaton, R. W. and D. W. Ribbons. 1982. Metabolism of dibutylphthalate and phthalate by Microccocus sp. strain 12B. J. Bacteriol. 151: 48-57
11 Cheng, H. F., S. Y. Chen, and J. G. Lin. 2000. Biodegradation of di-(2-ethylhexyl) phthalate in sewage sludge. Water Sci. Technol. 41: 1-6
12 Niazi, J. H., D. T. Prasad, and T. B. Karegoudar. 2001. Initial degradation of dimethyl phthalate by esterases from Bacillus species. FEMS Microbiol. Lett. 196: 201-205   DOI   ScienceOn
13 Wang, Y., Y. Fan, and J.-D. Qu. 2004. Dimethyl phthalate ester degradation by two planktonic and immobilized bacterial consortia. Int. Biodeterior. Biodegrad. 53: 93-101   DOI   ScienceOn
14 Ejlertsson, J., F. P. Houwen, and B. H. Svensson. 1996. Anaerobic degradation of diethyl phthalate and phthalic acid during incubation of municipal solid waste from a biogas digestor. Swedish J. Agric. Res. 26: 53-59
15 Johnson, B. T., M. A. Heitkamp, and J. R. Jones. 1984. Environmental and chemical factors influencing the biodegradation of phthalic-acid esters in fresh-water sediments. Environ. Pollut. 8: 101-118
16 Kurane, R. 1997. Microbial degradation and treatment of polycyclic aromatic hydrocarbons and plasticizers. Ann. NY Acad. Sci. 829: 118-134   DOI   PUBMED
17 Wang, J. L., P. Liu, and Y. Qian. 1999. Microbial metabolism of di-n-butyl phthalate (DBP) by a denitrifying bacterium. Proc. Biochem. 34: 745-749   DOI   ScienceOn
18 Roslev, P., P. L. Madsen, J. B. Thyme, and K. Henriksen. 1998. Degradation of phthalate and di-(2-ethylhexyl)phthalate by indigenous and inoculated microorganisms in sludge-amended soil. Appl. Environ. Microbiol. 64: 4711-4719
19 Williams, C. 1996. Combating marine pollution from land-based activities: Australian initiatives. Ocean Coastal Manage. 33: 87-112   DOI   ScienceOn
20 Cartwright, C. D., S. A. Owen, I. P. Thompson, and R. G. Bums. 2000. Biodegradation of diethyl phthalate in soil by a novel pathway. FEMS Microbiol. Lett. 186: 27-34   DOI   ScienceOn
21 Nyholm, N., F. Ingerslev, U. T. Berg, J. P. Pedersen, and H. FrimerLarsen. 1996. Estimation of kinetic rate constants for biodegradation of chemicals in activated sludge wastewater treatment plants using short term batch experiments and mg/l range spiked concentrations. Chemosphere 33: 851 -864   DOI   ScienceOn
22 Gu, J.-D., Y. Wang, and J. Li. 2004. Degradation of the endocrine-disrupting dimethyl phthalate and dimethyl isophthalate by mangrove microorganisms, pp. 557-561. In W. Verstraete (ed.), European Symposium on Environmental Biotechnology. A. A. Balkema Publishers, The Netherlands
23 Joblings, S., T. Reynolds, R. White, M. G. Parker, and J. P. Sumpter. 1995. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ. Health Perspect. 103: 582-587   DOI   ScienceOn
24 Fan, Y., Y. Wang, P. Y. Qian, and J.-D. Gu. 2004. Optimization of phthalic acid batch biodegradation and the use of modified Richards model for modeling degradation. Int. Biodeterior. Biodegrad. 53: 57-63   DOI   ScienceOn
25 Fatoki, O. S. and F. Vermon. 1990. Phthalate esters in rivers of the Greater Manchester area, UK. J. Sci. Total Environ. 95: 227-232   DOI   ScienceOn
26 Juneson, C., O. P. Ward, and A. Singh. 2001. Biodegradation of bis(2-ethylhexyl)phthalate in a soil slurry-sequencing batch reactor. Proc. Biochem. 37: 305-313   DOI   ScienceOn
27 Wang, J. L., P. Liu, and Y. Qian. 1995. Microbial degradation of di-n-butyl phthalate. Chemosphere 31: 4051-4056   DOI
28 Patel, D. S., A. J. Desai, and J. D. Desai. 1998. Biodegradation of dimethylterephthalate by Comamonas acidovorans D-4. Indian J. Exp. Biol. 36: 321-324
29 Marttinen, S. K., R. H. Kettunen, K. M. Sormunen, and J. A. Rintala. 2003. Removal of bis(2-ethylhexyl)phthalate at a sewage treatment plant. Water Res. 37: 1385-1393   DOI   ScienceOn
30 Benckiser, G. and J. C. G. Ottow. 1982. Metabolism of the plasticizer di-n-butyl phthalate by Pseudomonas pseudoalcaligenes under anaerobic conditions with nitrate as the electron acceptor. Appl. Environ. Microbiol. 44: 576-578