• 제목/요약/키워드: degradation enzyme

검색결과 597건 처리시간 0.028초

The Synthesis of Cellulose-graft-poly (L-lactide) by Ring-opening Polymerization and the Study of Its Degradability

  • Dai, Lin;Xiao, Shu;Shen, Yue;Qinshu, Baichuan;He, Jing
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.4122-4126
    • /
    • 2012
  • Cellulose-graft-poly (L-lactide) (cellulose-g-PLLA) was successfully prepared via ring-opening polymerization (ROP) by using 4-dimethylaminopyridine (DMAP) as an organic catalyst in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). The structure and morphology of the polymer was characterized by nuclear magnetic resonance (NMR) and transmission electron microscope (TEM). From wide-angle X-ray powder diffraction (WAXD) and degradation test (by acid, alkaline, PBS and enzyme solution), changes in the crystalline structure as a result of degradation was also investigated. The results indicated that materials which have low degree of crystallinity showing higher degradability, however, in acid liquor, enzyme solution, alkaline liquor and PBS system, the degradation rate of the polymer decreased by the above sequence. Moreover, with the further increase of graft degree of this material, its degradation degree decreased.

Purification and Characterization of the Lipase from Acinetobacter sp. B2

  • Sohn, Sung-Hwa;Park, Kyeong-Ryang
    • Molecular & Cellular Toxicology
    • /
    • 제1권3호
    • /
    • pp.189-195
    • /
    • 2005
  • Industrial development has increase consumption of crude oil and environmental pollution. A large number of microbial lipolytic enzymes have been identified and characterized to date. To development for a new lipase with catalytic activity in degradation of crude oil as a microbial enzyme, Acinetobactor sp. B2 was isolated from soil samples that were contaminated with oil in Daejon area. Acinetobactor sp. B2 showed high resistance up to 10 mg/mL unit to heavy metals such as Ba, Li, Al, Cr, Pb and Mn. Optimal growth condition of Acinetobactor sp. B2 was confirmed $30^{\circ}C$. Lipase was purified from the supernatant by Acinetobactor sp. B2. Its molecular mass was determined to the 60 kDa and the optimal activity was shown at $40^{\circ}C$ and pH 10. The activation energies for the hydrolysis of p-nitrophenyl palmitate were determined to be 2.7 kcal/mol in the temperature range 4 to $37^{\circ}C$. The enzyme was unstable at temperatures higher than $60^{\circ}C$. The Michaelis constant $(K_{m})\;and\;V_{max}$ for p-nitrophenyl palmitate were $21.8{\mu}M\;and\;270.3{\mu}M\;min^{-1}mg\;of\;protein^{-1}$, respectively. The enzyme was strongly inhibited by $Cd{2+},\;Co^{2+},\;Fe^{2+},\;Hg^{2+},\;EDTA$, 2-Mercaptoethalol. From these results, we suggested that lipase purified from Acinetobactor sp. B2 should be able to be used as a new enzyme for degradation of crude oil, one of the environmental contaminants.

리그닌분해(分解)와 리그닌분해효소(分解酵素) 생산(生産)을 위한 목재부후균(木材腐朽菌)의 선발(選拔)과 평가(評價)(I) - 고활성(高活性) 리그닌분해균(分解菌)의 선발(選拔) - (Screening and Evaluating of Wood-Rotting Fungi for Lignin Degradation and Ligninolytic Enzyme Production(I) - Screening of High Active Lignin-Degrading Fungi -)

  • 정현채;박서기;김병수;박종열
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권4호
    • /
    • pp.108-116
    • /
    • 1995
  • Guaiacol을 첨가한 potato-dextrose agar배지와 참나무 목분 배지를 이용하여 배지의 발색 정도를 정량함으로써 리그닌 분해와 리그닌 분해효소 생산을 위한 우수 균주분리를 시도하였다. 배지의 발색정도와 리그닌 분해율과는 정의 상관을 나타내어 미지균의 리그닌 분해력 추정을 가능하게 하였으며, 버섯의 자실체와 부후재로 부터 분리한 리그닌분해균 중에서 리그닌 분해력과 laccase활성이 우수한 LKY-12, LKY-7과 Coriolus versicolor-13 균주를 선발하였다. 이들 균주의 리그닌 분해율은 30~35% 범위이고, glucose-peptone broth에서 리그닌 분해효소 활성이 다른 균주에 비하여 매우 높아서 우수균주의 특성을 나타냈으며, 생물학적인 펄프화 및 표백 그리고 리그닌분해효소 생산에 이용 가능한 균주로 생각되었다.

  • PDF

Laccase Immobilization on Copper-Magnetic Nanoparticles for Efficient Bisphenol Degradation

  • Sanjay K. S. Patel;Vipin C. Kalia;Jung-Kul Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권1호
    • /
    • pp.127-134
    • /
    • 2023
  • Laccase activity is influenced by copper (Cu) as an inducer. In this study, laccase was immobilized on Cu and Cu-magnetic (Cu/Fe2O4) nanoparticles (NPs) to improve enzyme stability and potential applications. The Cu/Fe2O4 NPs functionally activated by 3-aminopropyltriethoxysilane and glutaraldehyde exhibited an immobilization yield and relative activity (RA) of 93.1 and 140%, respectively. Under optimized conditions, Cu/Fe2O4 NPs showed high loading of laccase up to 285 mg/g of support and maximum RA of 140% at a pH 5.0 after 24 h of incubation (4℃). Immobilized laccase, as Cu/Fe2O4-laccase, had a higher optimum pH (4.0) and temperature (45℃) than those of a free enzyme. The pH and temperature profiles were significantly improved through immobilization. Cu/Fe2O4-laccase exhibited 25-fold higher thermal stability at 65℃ and retained residual activity of 91.8% after 10 cycles of reuse. The degradation of bisphenols was 3.9-fold higher with Cu/Fe2O4-laccase than that with the free enzyme. To the best of our knowledge, Rhus vernicifera laccase immobilization on Cu or Cu/Fe2O4 NPs has not yet been reported. This investigation revealed that laccase immobilization on Cu/Fe2O4 NPs is desirable for efficient enzyme loading and high relative activity, with remarkable bisphenol A degradation potential.

무화과(Fig) 효소를 첨가한 유산균을 이용하여 알코올 대사활성 함유 치즈의 제조 (Production of cheese containing alcohol metabolism using Lactobacillus with fig enzyme)

  • 이성재;양영헌;전종민;이기원;조인재;이성민;류정열;신원성;김정수
    • 한국식품과학회지
    • /
    • 제49권2호
    • /
    • pp.141-145
    • /
    • 2017
  • 본 연구에서는 알코올 분해능이 높은 기능성 치즈를 제조하기 위하여 L. kitasatonis, L. amylophillus, L. mesenteroides sub. 및 무화과 효소를 이용하였다. 각각 균주의 에탄올, 내산 및 내담즙에 내성이 우수함을 확인하였고, ADH 및 ALDH 활성도를 측정한 결과 10%의 무화과 효소를 첨가하였을 때의 ADH 활성도는 각각 $688.39{\pm}51.63$, $1054.98{\pm}79.12$, $825.28{\pm}61.89{\mu}mol$로 나타났으며 ALDH는 각각 $751.91{\pm}54.14$, $1209.93{\pm}87.11$, $891.09{\pm}64.16{\mu}mol$로 무화과를 첨가하지 않았을 때보다 각각 증가하는 것으로 나타났다. 또한 L. amylophillus 균주를 이용하여 치즈를 제조한 뒤, 10%의 무화과 효소를 첨가하였을 때 ADH 및 ALDH 분해능이 무화과효소를 첨가하지 않았을 때 보다 각각 252, 246% 증가함을 확인하였다. 결론적으로 무화과 효소를 첨가하였을 때, L. amylophillus을 이용한 치즈의 제품이 높은 알코올 분해능을 가지는 것으로 확인되었고, 이를 통해 기능성 식품의 제조로써 무화과 효소의 적용 가능성을 확인하였다.

회전원판반응조에 의한 Peudomonas putida H-5의 포름알데히드의 연속적 분해 (Continuous Degradation of Formaldehyde by Peudomonas putida H-5 Using Rotation Disc Contactor)

  • 류병호;임복규
    • KSBB Journal
    • /
    • 제8권1호
    • /
    • pp.42-48
    • /
    • 1993
  • Continuous degradation of formaldehyde by using a rotating disc contactor was investigated in this study. Peudomonas putida H-5K was selected as a mutant using N-methyl N'-nitro N-nitrosoguandine (250$\mu\textrm{g}$/$m\ell$), which showed 1.5 times higher ability of formaldehyde degradation than that of the parent strain. Enzyme activity for formaldehyde degradation released form Peudomonas putida H-5K showed the highest level of 6.2mo1/min/mg protein in the 2% glucose mineral medium containing 0.02% formaldehyde. Degradation of formaldehyde from the first stage in rotating disc contactor was 95% and 5% from the 4th stage when the reactor was fed with 0.02% or 0.04% formaldehyde solution at a rate of 20$m\ell$ per hour. Continuous degradation of formaldehyde using rotating disc contactor was above 95%o in the medium containing 0.04% formalchyde, at the medium feed ratc of 20$m\ell$ per hour.

  • PDF

Bacillus subtillis K-54가 생산하는 Fibrinolytic enzyme의 혈전생성 및 스트레스에 미치는 영향 (The effect of fibrinolytic enzyme produced from Bacillus subtilis K-54 on the thrombosis and stress in vivo.)

  • 이홍석;이철수;유천권;서원상;강상모
    • 한국미생물·생명공학회지
    • /
    • 제28권1호
    • /
    • pp.52-58
    • /
    • 2000
  • The effect of fivrinolytic enzyme produced from Bacillus subtilis K-54 on the thrombosis and stress in vivo was investigated. Each partially purified fibrinolytic enzyme of 4 protein casein unit was administered orally for 3 days before intravenously injection with collagen and epinephrine. In the mice group administered with the enzyme and increased life span of mice was observed in comparison with that of control. The result suggest that the enzyme may prevent the formation of thrombos in vivo. Administration of the enzyme did not influence to stress itself because 5-hydroxyindoleacetatic acid concentration of brain in the mice group with stress did not decreased after the administration of the enzyme. The value of lipid peroxide (LPO) of the liver and brain cells in the group treted with the enzyme was lower than that of control. However, protein degradation (PDP value showed no significant difference between treatment and control groups. In addition, the value of activated partial thromboplastin time (APTT), protrombin time (PT0 and antiplasmin in blood were higher in the stress group than that of the enzyme treated group.

  • PDF

Aspergillus awamori var. fumeus가 생성하는 효소의 Aflatoxin 분해특성 (Aflatoxin Degradation by an Enzyme from Aspergillus awamori var. fumeus)

  • 이찬;이성택;김영배
    • 한국미생물·생명공학회지
    • /
    • 제20권4호
    • /
    • pp.390-394
    • /
    • 1992
  • Aspergillus awamori var. fumeus가 균체 밖으로 생산하느 aflatoxin 분해인자의 효소적 특성을 조사 하기위하여 그 배양 여액을 aflatoxin B1과 반응시킨 결과 1시간 동안 60의 기질을 분해하였다. 반응속도는 초기에 가장 높았으며 시간이 지날 수록 낮아졌다. 반응속도와 기질농도의 관계는 이중역수 식에서 직선을 보이며 겉보기 $K_m$$10.2{\mu}M$로 측정되었다. 최적온도 및 최적 pH는 각각 $30^{\circ}C$ 및 5로 나타났다. 반응은 분자상 산소를 요구하며 $Co^{2+}$에 의해서 촉진되나 $Fe^{2+}$, $Ca^{2+}$, $Zn^{2+}$, $Cu^{2+}$, 및 $Ba^{2+}$ 등의 이온에 의하여 저해되었다. 또한 KCN과 metyrapone에 의하여 저해되나, $NaIO_4$, cytochrome C 및 NADPH에 의한 영향은 관찰되지 않았다.

  • PDF

Different Catabolism Pathways Triggered by Various Methylxanthines in Caffeine-Tolerant Bacterium Pseudomonas putida CT25 Isolated from Tea Garden Soil

  • Ma, Yi-Xiao;Wu, Xiao-Han;Wu, Hui-Shi;Dong, Zhan-Bo;Ye, Jian-Hui;Zheng, Xin-Qiang;Liang, Yue-Rong;Lu, Jian-Liang
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권7호
    • /
    • pp.1147-1155
    • /
    • 2018
  • The degradation efficiency and catabolism pathways of the different methylxanthines (MXs) in isolated caffeine-tolerant strain Pseudomonas putida CT25 were comprehensively studied. The results showed that the degradation efficiency of various MXs varied with the number and position of the methyl groups on the molecule (i.e., xanthine > 7-methylxanthine ${\approx}$ theobromine > caffeine > theophylline > 1-methylxanthine). Multiple MX catabolism pathways coexisted in strain CT25, and a different pathway would be triggered by various MXs. Demethylation dominated in the degradation of N-7-methylated MXs (such as 7-methylxanthine, theobromine, and caffeine), where C-8 oxidation was the major pathway in the catabolism of 1-methylxanthine, whereas demethylation and C-8 oxidation are likely both involved in the degradation of theophylline. Enzymes responsible for MX degradation were located inside the cell. Both cell culture and cell-free enzyme assays revealed that N-1 demethylation might be a rate-limiting step for the catabolism of the MXs. Surprisingly, accumulation of uric acid was observed in a cell-free reaction system, which might be attributed to the lack of activity of uricase, a cytochrome c-coupled membrane integral enzyme.

Lignin을 분해하는 Streptomyces strainsdop 의한 페놀화합물의 분해 (The Degradation of Phenolic Compounds by Lignolytic Streptomyces strains)

  • 김태전
    • 한국환경보건학회지
    • /
    • 제26권3호
    • /
    • pp.86-91
    • /
    • 2000
  • The purpose of this was to investigate the degradation efficiency of phenol compounds(catechol, ferulic acid, protocatechuic acid, syringic acid, vanillic acid) by Streptomyces halstedii scabies SAI-36, Streptomyces avendulas SA2-14, and Strptomyces badius(ATCC 39117, control group). The results were as follows: Catechol showed the degradation efficiency that is lower than 50% in three strains. Ferulic acid and vanillic acid showed high degradation efficiency of 98.8% and 94.5% respectively by Streptomyces lavendulas SA2-14. protocatechuic acid and syringicacid showed high degradation efficiency of 89.6% and 77.9%. The degradation efficiency of catechol by Streptomyces halstedii scabies SAI-36, Streptomyces lavendulas SA2-14 and Streptomyces badius(ATCC 39117) was low as 49.2%, 40.2% and 20.2% respectively. But the degradation of other phenolic compoumds except catechol by Streptomyces laven-dulas SA2-36 and Streptomyces badius(ATCC 39117). The results demonstrated that two experimental strains are superior ability to control group in degradation of phenol compounds and Streptomyces lavendulas SA2-14 was superior of two experimental strain. This results were consistent with previous research results that Streptomyces lavendulas SA2-14 was the best strain in degradation ability for lignin, decoloration abilities for variousdyes, and various enzyme production abilities. Therefore, it is suggested that lignin can be used as a indicator when selecting Actinomycetes for degradation of non-degradable materials such as phenol compounds.

  • PDF