• Title/Summary/Keyword: degradation analysis

Search Result 3,133, Processing Time 0.03 seconds

Analysis of Degradation Data Using Robust Experimental Design (강건 실험계획법을 이용한 열화자료의 분석)

  • 서순근;하천수
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.1
    • /
    • pp.113-129
    • /
    • 2004
  • The reliability of the product can be improved by making the product less sensitive to noises. Especially, it Is important to make products robust against various noise factors encountered in production and field environments. In this paper, the phenomenon of degradation assumes a simple random coefficient degradation model to present analysis procedures of degradation data for robust experimental design. To alleviate weak points of previous studies, such as Taguchi's, Wasserman's, and pseudo failure time methods, novel techniques for analysis of degradation data using the cross array that regards amount of degradation as a dynamic characteristic for time are proposed. Analysis approach for degradation data using robust experimental design are classified by assumptions on parametric or nonparametric degradation rate(or slope). Also, a simulation study demonstrates the superiority of proposed methods over some previous works.

Reliability Analysis of Degradation Data for LEDs (LED 열화데이터의 신뢰성 분석)

  • Park, Chang-Kyu
    • Journal of Applied Reliability
    • /
    • v.9 no.1
    • /
    • pp.59-69
    • /
    • 2009
  • LEDs have rapidly replaced old light devices such as incandescent or fluorescent lamps, and have been widely applied in general lighting, signals, automobile, signs and others. Since LEDs are for both indoor and outdoor use, temperature and humidity inevitably affect its reliability. We explain the result of the degradation life test on LEDs, and guide to reliability analysis procedure. Analysis on reliability measures are performed by Weibull++6 program, and a common shape parameter of Weibull distribution on the LED is suggested. Also, we make a description of reliability analysis procedures for the degradation data using collected test data from degradation tests. Reliability analysis procedures are consisted of estimating degradation models and failure time, verifying of distribution and parameters of the distribution, and estimating of reliability measures. Finally, this paper suggests reliability analysis method for light characteristics on LEDs.

  • PDF

A Case Study of Degradation Analysis for the Passenger Vehicles Shock Absorber (승용차량용 쇽업소버의 열화분석 사례연구)

  • Song, Hyun-Seok;Seo, Young-Kyu;Jung, Do-Hyun;Jang, Joong-Soon;Kim, Eunkyu;Park, Boo-Hee
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • Purpose: The purpose of this study is to estimate the lifetime of commercial passenger vehicles shock absorber using degradation test and data. Method: The degradation factor of shock absorber was determined to be a damping force using FMEA. Degradation test was performed on damping force under real world usage condition and analysed the degradation data. Results: To estimate the lifetime of shock absorber, a degradation model was developed and a numerical example was provided. Conclusion: Evaluation of the lifetime of commercial and military vehicles shock absorber will be possible by using the proposed degradation analysis method.

A Kinetic Study of Thermal Degradations of Chitosan/Polycaprolactam Blends

  • Liao, Shen-Kun;Hung, Chi-Chih;Lim, Ming-Fung
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.466-473
    • /
    • 2004
  • We have used FT-IR spectra to explain the effects of hydrogen bonding between chitosan and polycaprolactam (PA6). A dynamic mechanical analysis study suggested that the optimum chitosan and PA6 miscibility under the conditions of this experiment were obtained at a blending ratio of 40:60. We studied the thermal degradation of chitosan blended with PA6 (chitosan/PA6) by thermogravimetric analysis and kinetic analysis (by the Ozawa method). Dry chitosan and PA6 exhibited a single stage of thermal degradation and chitosan/PA6 blends having> 20 wt% PA6 exhibited at least two stages of degradation. In chitosan/PA6 blends, chitosan underwent the first stage of thermal degradation; the second stage proceeded at a temperature lower than that of PA6, because the decomposition product of chitosan accelerated the degradation of PA6. The activation energies of the blends were between 130 and 165 kJ/mol, which are also lower than that of PA6.

The Improvement and Diagnosis of DC Degradation Properties with The Equivalent-Circuit Analysis of ZnO Varistors (ZnO 바리스터의 등가회로 분석을 통한 DC 열화특성의 향상과 진단)

  • So, Soon-Jin;Kim, Deok-Kyu;Kim, Young-Jin;So, Byung-Moon;Park, Choon-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.978-980
    • /
    • 1999
  • In this paper, DC degradation of ZnO varistor sintered in the atmospheres of nitrogen and oxygen was investigated. The content of $SiO_2$ containing 0.0, 0.2, 0.5 mol% respectively was addicted for the improvement of degradation property. ZnO varistor was fabricated in the special electrical furnace which had the vacuum system. The temperature and the voltage for the DC degradation test were $115{\pm}2^{\circ}C$, $0.85V_{1mA/cm^2}$. The time conditions for this test were 0, 2, 4, 8 hours and Current-voltage analysis is used to determine nonlinear coefficients($\alpha$). Frequency analysis are accomplished for the understanding of electrical properties as DC degradation test. In this experiment, We concluded that nonlinear coefficient decreased as the amount of $SiO_2$ addition increased, but degradation rate coefficient increased as the amount of $SiO_2$ addition increased. Also, degradation test with the analysis of equivalent circuit showed that the degradation phenomenon of ZnO varistor wasn't linearity.

  • PDF

A Study on the Degradation Mechanism of ZnO Ceramic Varistor Manufactured by Ambient Sintering-Process (분위기 소결공정에 의해 제조된 ZnO 세라믹 바리스터의 열화기구 연구)

  • 소순진;김영진;박춘배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.383-389
    • /
    • 2000
  • The relationship between the DC degradation characteristics of the ZnO varistor and the ambient sintering-process is investigated in this study. ZnO varistors made o matsuoka’s composition were fabricated by standard ceramic techniques. The ambient sintering-process is performed at the extraordinary electrical-furnace which is equipped with the vacuum system. Gases used in sintering process were oxygen nitrogen argon and air. Using XRD and SEM the phase and microstructure of samples were analyzed respectively. The conditions of DC degradation tests were conducted at 115$\pm$2$^{\circ}C$ for 13 h. Current-voltage analysis is used to determine nonlinear coefficients($\alpha$). Frequency analysis are performed to understand electrical properties as DC degradation test. From above analysis it is found that the ZnO varistor sintered in oxygen atmosphere showed superior properties at the DC degradation test and degradation phenomenon of ZnO varistor is caused by the change of electrical properties in grain boundary. These results are in accordance with Gupta’s degradation model.

  • PDF

Thermal Degradation Behavior and Reliability Analysis of Plastic Materials for Household Electric Appliances (가전제품용 플라스틱 재료의 열분해 거동 및 신뢰성 평가)

  • Im, Chang-Gyu;Kim, Jun-Young;Kim, Seong-Hun
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.508-517
    • /
    • 2005
  • The thermal degradation behavior and reliability analysis were investigated using dynamic thermogravimetric analysis (TGA) and accelerated degradation test (ADT) to characterize the dynamic parameters related to thermal degradation of plastic meterials for household electric appliances. In addition, the weathering of the plastic were performed by ADT using Xenon uc, and the color difference of the samples after ADT were measured with Color Eye 3010 specoophotometer. he activation energy for thermal degradation of the samples increased with increasing the rate of weight loss. The Kim-Park method was found to be more effective analysis in describing thermal degradation of plastic meterials. Plastic materials were very sensitive to ultra-violet rays in faster degradation.

The Analysis of Degradation Phenomena in Piezoelectric Ceramics by Equivalent Circuit Analysis Method (PZT 세라믹스의 등가 정수 측정에 의한 압전열화 기구 해석)

  • 손준호;정우환;김정주;김진호;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.5
    • /
    • pp.383-389
    • /
    • 1991
  • The analysis of degradation phenomena of poled PZT ceramics was investigated relate to piezoelectric equivalent circuit elements. As a result, in the case of impressed mechanical shock on poled specimen of degradation phenomena was explained by domain rearrangement, and in the case of left in air, degradation phenomena was explained by space charge diffusion.

  • PDF

Analysis of Element distribution and Degradation Characteristics in the grain boundary of ZnO Ceramic Varistors with EPMA (EPMA를 이용한 ZnO 세라믹 바리스터 입계의 원소분포와 열화특성 분석)

  • So, Soon-Jin;Kim, Young-Jin;Park, Young-Soon;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.64-67
    • /
    • 2000
  • Element distribution analysis and degradation characteristics of the ZnO varistors fabricated at the ambient sintering-process is investigated in this study. ZnO varistors made of Matsuoka's composition were fabricated by standard ceramic techniques. The ambient sintering-process is performed at the special electrical-furnace which is equipped with the vacuum system. The Gases of injection at sintering- process were oxygen, air, nitrogen and argon respectively. Element and quantitative analysis in the microstructure of ZnO varistors made use of EPMA equipment. Degradation characteristics were showed by DC degradation tests at $115{\pm}2\;^{\circ}C$ for period up to 13 h. From above analysis, it is found that at the DC degradation test the ZnO varistor sintered in oxygen atmosphere showed the excellent prop properties among them and these results could be explain by element and quantitative analysis in ZnO microstructure.

  • PDF

A Study on the Degradation Characteristics of ZnO Ceramic Devices by the Valence Controls (원자가 제어에 의한 ZnO 세라믹 소자의 열화특성 연구)

  • 소순진;김영진;소병문;박춘배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.157-160
    • /
    • 2001
  • Three sets of ZnO ceramic devices (reference samples with Matsuoka\`s composition; added 7o MgO, A1$_2$O$_3$, SiO$_2$) have been prepared by the conventional mixed oxide route. These additives were determined by the factors of valences and ionic radiuses. DC accelerated degradation test was performed for analysis of degradation characteristics versus the various additives. The conditions of DC degradation test were 115${\pm}$2$^{\circ}C$ for 12h. Using XRD and SEM, the Phase and microstructure of samples were analyzed respectively. E-J analysis was used to determine ${\alpha}$. Frequency analysis was accomplished to understand the relationship between R$\sub$g/ and $R_{b}$ with the electric stress at the equivalent circuit.

  • PDF