A 120-cm core recovered from Lake Hovsgol, the northern Mongolia provides evidence for climate variability since the Marine Isotope Stage 3, representing a sharp lithological change. The lowermost part of the core consists of diatom-barren calcareous silty clay without coarse sands, framboidal pyrite, and biogenic components deposited during the MIS 3. Following the last glacial maximum, in-situ moss is included in the sediments, as lake-level was retreated by cold and dry environment with low precipitation. The AMS radiocarbon ages of the plant fragments match a marked lithologic boundary between 14,060 and 14,325 $^{14}C$ yr BP. The contents of coarse sands abruptly increase, indicating probably wind-derived sandy dust or coarse grains contributed from floating icebergs. And abundant framboidal pyrite grains were deposited in an anoxic environment, as reflected by high accumulation of organic matters at a low lake stand. During the deglaciation, quantities of coarse sands, ostracod, shell fragments, framboidal pyrite, and diatom markedly varies by regional and global scale climate regimes. Some allochthonous coarse sands were probably ice-rafted debris derived from floating icebergs. A rapid increase in diatom productivity probably marked the onset of Bolling-Allerodwarming. Subsequent high concentration of framboidal pyrite probably represents a dry and cold condition, such as Younger Drays events. Consistent warm period with high precipitation at Holocene is documented by diatomaceous clayey ooze without framboidal pyrite, coarse sands, and ostracod.
A 120-cm core recovered from Lake Hovsgol, the northern Mongolia provides evidence for climate variability since the Marine Isotope Stage 3, representing a sharp lithological change. The lowermost part of the core consists of diatom-barren calcareous silty clay without coarse sands, framboidal pyrite, and biogenic components deposited during the MIS 3. Following the last glacial maximum, in-situ moss is included in the sediments, as lake-level was retreated by cold and dry environment with low precipitation. The AMS radiocarbon ages of the plant fragments match a marked lithologic boundary between 14,060 and 14,325 $^{14}C$ yr BP. The contents of coarse sands abruptly increase, indicating probably wind-derived sandy dust or coarse grains contributed from floating icebergs. And abundant framboidal pyrite grains were deposited in an anoxic environment, as reflected by high accumulation of organic matters at a low lake stand. During the deglaciation, quantities of coarse sands, ostracod, shell fragments, framboidal pyrite, and diatom markedly varies by regional and global scale climate regimes. Some allochthonous coarse sands were probably ice-rafted debris derived from floating icebergs. A rapid increase in diatom productivity probably marked the onset of Bolling-Allerod warming. Subsequent high concentration of framboidal pyrite probably represents a dry and cold condition, such as Younger Drays events. Consistent warm period with high precipitation at Holocene is documented by diatomaceous clayey ooze without framboidal pyrite, coarse sands, and ostracod.
A geochemical study of three piston cores (ST.4, ST.6 and ST.20) taken from the Northwest Pacific (eastern edge of Shikoku Basin) provides information about changes in surface water paleoproductivity and sedimentation during the last 127 kys. Paleoproductivity variations were estimated on the basis of total organic carbon content and carbonate mass accumulation rate. The paleoproductivity based on total organic carbon shows significant spatial variations between glacial and interglacial periods. During the last glacial maximum (LGM) paleoproductivity increased about 1.5 times with deglaciation decrease compared with those of the Holocene at inner side of the Shikoku Basin (ST.4 and ST.6). On the other hand, paleoproductivity at outer side of Shikoku Basin (ST.20) indicating not distinctive increase but deglaciation increase. The C/N ratios fall below 10 for cores ST.4 and ST.6, but C/N ratios between 100 ka and 80 ka in ST.20 which show around 10 or larger values suggest a predominance of marine organic carbon with some admixture of terrigenous materials. The carbonate mass accumulation rate of three cores show different patterns of calcareous record with respect to organic carbon based paleoproductivity variation. In the inner side of Shikoku Basin (ST.4 and ST.6) the carbonate mass accumulation rate decreased during last glacial maximum, and significant increase of carbonate mass accumulation rate is recognized at outer side of Shikoku Basin (ST.20). Thus, this set of data reveals that spatial paleoproductivity variations between inner and outer side of Shikoku Basin during the glacial and interglacial periods.
There is a great deal evidence concerning crustal uplift, after deglaciation, in the vicinity of Syowa Station $(69^{\circ}S,\;39^{\circ}E)$ from tide gauge data, seismic evidence, raised beaches, marine terraces, etc. The geomorphological and tide gauge data show that the crustal uplift is going on around Syowa Station. Seismic observations at Syowa Station started in 1959. Phase readings of the earthquakes have been published by National Institute of Polar Research once a year since 1968, as one of the Data Report Series. Eighteen local earthquakes were detected on short period seismograms at Syowa Station in 1990-2000. The seismicity during the period from 1990 to 2000 was lower than that from 1987 to 1989 when epicenters of local earthquakes were determined by tripartite seismic array. Local earthquake activity corroborates the crustal uplif4 which is an intermittent phenomenon. Sea level falling of 4.5 mm/y was found using data in 1975-1992. This felling rate is consistent with the geomorphological data. A route for repeat leveling survey was established in East Ongul Island. No appreciable change of sea level was observed for the last 14 years. A dynamics of the crustal uplift around Syowa Station has been discussed using geomorphological data, ocean tide, and seismic and leveling data, which is estimated to be an intermittent phenomenon. When local seismic activity is high, the crustal uplift is estimated to be going on. On the contrary, the crustal uplift is in dormancy when the local seismicity is low. Repeated leveling measurements suggest no significant changes, which further supports the idea that the crustal uplift in offshore is not a tilt trend movement but a block movement.
4차 고기후모델링간 상호비교연구 (Paleoclimate Modeling Intercomparision Project phase 4; PMIP4)는 6차 접합모델간 상호비교연구 (Coupled Model Intercomparison Project phase 6; CMIP6)와 연계하여 제4기의 여러 시기에 대한 기후 재현 실험을 수행하고 있다. 여러 모델링 기관은 고유의 모델을 이용하여 CMIP6 DECK 실험군의 산업혁명기 이전 기후 실험(piControl)을 바탕으로, 6 ka 홀로세 중기 실험 (midHolocene), 21 ka 마지막 최대빙하기 실험(lgm), 127 ka 마지막 간빙기 실험 (lig127k)의 평형 기후실험들과, 850-1849 CE 마지막 천년 실험 (past1000), 21-9 ka 마지막 퇴빙기 실험, 140-127 ka 두 번째 마지막 퇴빙기 실험 등의 점진적 기후변화 실험들을 수행하고 있다. 이 기술노트에서는 이 PMIP4-CMIP6의 Tier 1 실험들과 경계 조건들을 소개하고 제4기 기후의 이해를 위해 추가적으로 수행중인 Tier 2와 Tier 3 실험들을 정리하였다.
베링해 중부 지역에서 획득된 피스톤 코아 PC23A의 퇴적물에서 오팔과 총유기탄소의 함량을 측정하고 집적률을 계산하여 마지막 빙하기 이후의 고생산성 변화를 살펴보았다. 코아 PC23A의 연대는 부유성 유공충의 AMS $^{14}C$ 탄소연대와 방산충 L. nipponica sakaii의 마지막 출현 기준에 의해서 결정되어있으며, 코아 최하단부가 약 61,000년 전으로 계산되었고, 코아 상부는 일부 손실된 것으로 판단된다. 오팔과 총유기탄소 함량은 마지막 빙하기 동안 각각 1-10%, 0.2-1.0%의 범위에서 변동하였으며, 각각 5%와 0.7%의 평균값을 보였다. 반면, 후빙기 동안에 오팔과 총유기탄소 함량은 5-22%, 0.8-1.2%의 범위에서 변동하였으며, 평균값은 각각 8%와 1.0%로 증가된 값을 보여주었다. 마찬가지로 오팔과 총유기탄소의 집적률도 마지막 빙하기($1gcm^{-2}kyr^{-1}$, $0.2gcm^{-2}kyr^{-1}$)동안 보다 후빙기 동안(>$5gcm^{-2}kyr^{-1}$, >$1gcm^{-2}kyr^{-1}$)에 증가하였다. 후빙기 동안 증가된 생산성은 온난한 기후에서 해빙의 발달이 미비하고 높아진 해수면 조건에서 주변 육상으로부터 융빙수의 유입 증가와 남쪽으로부터 알라스카 해류 유입의 증가에 의하여 영양염 공급이 충분한 환경에서 규조류가 번성하였기 때문이다. 반면, 마지막 빙하기 동안에는 낮아진 해수면으로 인하여 알라스카 해류의 유입이 감소하여 영양염의 공급이 제한되고, 낮은 수온과 추운 기후로 인해 광범위하게 발달한 해빙에 의해서 생산성이 감소되었다.
A piston core (MR06-04 PC23A) collected from the northern continental slope in the central Bering Sea has recorded the high-resolution millennial-scale variation of calcium carbonate ($CaCO3$) content during the last 65 kyr. An estimation of the age of the core sediments was carried out by using the lithologic correlation of the deglacial laminated layers with a neighboring core (HLY02023JPC), complementing the last appearance datum of both Lychnocanoma nipponica sakaii (54 kyr) and Amphimelissa setosa (85 kyr). The probable age of core MR06-04 PC23A was approximately younger than 65 kyr. Two distinct events of a significant increase of $CaCO3$ in the deglacial laminated sediments clearly correspond to MWP1A and MWP1B in the Bering Sea (Gorbarenko et al. 2005) and to T1ANP and T1BNP in the North Pacific (Gorbarenko 1996). These pronounced peaks of $CaCO3$ contents result from the elevated carbonate production in the surface water and the subsequent weakened dilution due to terrestrial input, along with an enhanced oxygen minimum zone. The $CaCO3$ contents are low (${\sim}2%$) during the last glacial period mainly because of a low carbonate production caused by an expanded sea-ice cover and an increased dilution by terrigenous particles due to their closer distance to the continent during the sea-level low stand. The occurrence of seven distinct $CaCO3$ peaks in core MR06-04 PC23A is remarkable during MIS 3 and MIS 4, and they most likely correlate to the short-term millennial Dansgaard-Oeschger events.
Changes in the area of geo-ecosystem $(62^{\circ}09'S,\;58^{\circ}31'w)$ reflect climatic changes in the South Shetland Islands. Air temperature and deglaciation will increase. The ice-free space area at the SSSS 8- (ASPA 121) site has enlarged threefold during the last 21 years, thus creating conditions for inhabitation and succession. Wind, water and snow play important roles in transportation of geochemical components. They distribute nutrients, mineral substances, seeds, fragments of plants and animals, etc. Plant and animal colonization is patchy and it happens at random in an 'island' - like manner. The colonization pattern is dependant, to a high degree on physical factors. The newly uncovered ice-free areas are at first inhabited by a vascular plant known as the Deschampsia antarctica. The border of the land-oasis with Admiralty Bay is the place where the processes related to animal feeding at the sea and reproduction on the land take place. Bird colonies and pinniped lairs form centers of fertilization surrounded by high chemical gradients dependent on the direction of the flow of nutrients $(e.g.\;NH_4)$. During the last 25 years, the numbers of penguins in this region have decreased, and thus the amount of materials excreted on land has diminished. The numbers of fur seals change in multi-annual cycles, and their migration into this area is related to the E1 $Ni\~{n}o$ phenomenon. The numbers of elephant seals in the area did not change. Organic matter deposited by the sea onto the shore are a source of nutrients and deficient chemical elements on land. Mineral matter is washed out into the waters of Admiralty Bay. These processes change seasonally, and multi annually. Negative effects on the environment at Arctowski Station induced by man are slight, but noticeable nevertheless. Physical processes have the largest influence on the living conditions and distribution of plants and animals, and as a consequence, on the functioning of the geo-ecosystem in the coastal-shore zone of the Maritime Antarctic.
Analyses of sedimentological and geochemical parameters from two radiocarbon-dated sediment cores (JM98-845-PC and JM98-818-PC) retrieved from the central part of Isfjorden, Svalbard, in the Arctic Sea, reveal detailed paleoclimatic and paleoceanographic histories over the last 15,000 radiocarbon years. The overconsolidated diamicton at the base of core JM98-845-PC is supposed to be a basal till deposited beneath pounding glacier that had advanced during the LGM (Last Glacial Maximum). Deglaciation of the fjord commenced after the glacial maximum, marked by the deposition of interlaminated sand and mud in the ice-proximal zone by subglacial meltwater discharge, and prevailed between 13,700 and 10,800 yr B.P. with enriched-terrigenous organic materials. A return to colder conditions occurred at around 10,800 yr B.P. with a drop in TOC content, which is probably coincident with the Younger Dryas event in the North Atlantic region. At this time, an abrupt decrease of TOC content as well as an increase in C/N ratio suggests enhanced terrigenous input due to the glacial readvance. A climatic optimum is recognized between 8,395 and 2,442 yr B.P., coinciding with 'a mid-Holocene climatic optimum' in Northern Hemisphere sites (e.g., the Laurentide Ice sheet). During this time, as the sea ice receded from the fjord, enhanced primary productivity occurred in open marine conditions, resulting in the deposition of organic-enriched pebbly mud with evidence of TOC maxima and C/N ratio minima in sediments. Fast ice also disappeared from the coast, providing the maximum of IRD (ice-rafted debris) input. Around 2,442 yr B.p. (the onset of Neoglacial), pebbly mud, characterized by a decrease in TOC content, reflects the formation of more extensive sea ice and fast ice, which might cause decreased primary productivity in the surface water, as evidenced by a decrease in TOC content. Our results provide evidence of climatic change on the Svalbard fjords that helps to refine the existence and timing of late Pleistocene and Holocene millennial-scale climatic events in the Northern Hemisphere.
A borehole core ECSDP-102 (about 68.5 m long) has been investigated to get information on paleoenvironmental changes in response to the sea-level fluctuations during the period of late Quaternary. Several AMS $\^$14/C ages show that the core ECSDP-102 recorded the depositional environments of the northern East China Sea for approximately 60 ka. The Yangtze River discharged huge amounts of sediment into the northern East China Sea during the marine isotope stage (MIS) 3. In particular, $\delta$$\^$13/Corg values reveal that the sedimentary environments of the northern East China Sea, which is similar to the Holocene conditions, have taken place three times during the MIS 3. It is supported by the relatively enriched $\delta$$\^$13/Corg values of -23 to -21$\textperthousand$ during the marine settings of MIS 3 that are characterized by the predominance of marine organic matter akin to the Holocene. Furthermore, we investigated the three Holocene sediment cores, ECSDP-101, ECSDP-101 and YMGR-102, taken from the northern East China Sea off the mouth of the Yangtze River and from the southern Yellow Sea, respectively. Our study was focused primarily on the onset of the post-glacial marine transgression and the reconstructing of paleoenvironmental changes in the East China Sea and the Yellow Sea during the Holocene. AMS $\^$14/C ages indicate that the northern East China Sea and the southern Yellow Sea began to have been flooded at about 13.2 ka BP which is in agreement with the initial marine transgression of the central Yellow Sea (core CC-02). $\delta$$\^$18/O and $\delta$$\^$13/C records of benthic foraminifera Ammonia ketienziensis and $\delta$$\^$13/Corg values provide information on paleoenvironmental changes from brackish (estuarine) to modem marine conditions caused by globally rapid sea-level rise since the last deglaciation. Termination 1 (T1) ended at about 9.0-8.7 ka BP in the southern and central Yellow Sea, whereas T1 lasted until about 6.8 ka BP in the northern East China Sea. This time lag between the two seas indicates that the timing of the post-glacial marine transgression seems to have been primarily influenced by the bathymetry. The present marine regimes in the northern East China Sea and the whole Yellow Sea have been contemporaneously established at about 6.0 ka BP. This is strongly supported by remarkably changes in occurrence of benthic foraminiferal assemblages, $\delta$$\^$18/O and $\delta$$\^$13/C compositions of A. ketienziensis, TOC content and $\delta$$\^$13/Corg values. The $\delta$$\^$18/O values of A. ketienziensis show a distinct shift to heavier values of about 1$\textperthousand$ from the northern East China Sea through the southern to central Yellow Sea. The northward shift of $\^$18/O enrichment may reflect gradually decrease of the bottom water temperature in the northern East China Sea and the Yellow Sea.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.