• Title/Summary/Keyword: deformation patterns

Search Result 393, Processing Time 0.024 seconds

Molecular Dynamics Simulation of Deformation of Polymer Resist in Nanoimpirnt Lithography (나노임프린트 리소그래피에서의 폴리머 레지스트의 변형에 관한 분자 동역학 시뮬레이션)

  • Kang, Ji-Hoon;Kim, Kwang-Seop;Kim, Kyung-Woong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.410-415
    • /
    • 2004
  • Molecular dynamics simulations of nanoimprint lithography in which a stamp with patterns is pressed onto amorphous poly-(methylmethacrylate) (PMMA) surface are performed to study the deformation of polymer. Force fields including bond, angle, torsion, inversion, van der Waals and electrostatic potential are used to describe the intermolecular and intramolecular force of PMMA molecules and stamp. Periodic boundary condition is used in horizontal direction and $Nos\acute{e}$-Hoover thermostat is used to control the system temperature. As the simulation results, the adhesion forces between stamp and polymer are calculated and the mechanism of deformation are investigated. The effects of the adhesion force and friction force on the polymer deformation are also studied to analyze the pattern transfer in nanoimprint lithography. The mechanism of polymer deformation is investigated by means of inspecting the indentation process, molecular configurational properties, and molecular configurational energies.

  • PDF

The Study for Bead Effect in Inner Case on Thermal Deformation of Refrigerator (냉장고 내벽의 비드가 열변형에 미치는 영향에 관한 연구)

  • Zhai, JianGuang;Cho, Jong-Rae;Jeon, Woo-Jin;Kim, Joo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.96-101
    • /
    • 2011
  • Under extreme test or operation condition, refrigerator endures complicated stresses state and thermal bowing deformation arises on the sidewall. Shelf rails designed in the inner case provide increased surface area to permit expansion without bowing, and also increase structural rigidity to resist bowing. In this study, we designed six different shelf patterns of refrigerator model and studied the bead on refrigerator deformation using finite element method (FEM). Analysis result shows that increasing the numbers of beads properly in refrigerator is more helpful to reduce thermal bowing deformation. In addition, the beads would decrease stress on refrigerator sidewall. However, vertical beads have no effect to reduce thermal deformation of the bowing.

An Experimental Study on the Deformation Analysis and Automotive Body Repair in Automobile Frame Deformation according to Collision Types (충돌형태에 따른 자동차 프레임 변형시 변형분석 및 차체수리에 관한 실험적 연구)

  • Kwon, Yung-Shin;Kim, Tae-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.22-31
    • /
    • 2002
  • In present study, the deformation analysis and automotive body repair were analyzed with respect to collision types by case studies. As a result, lots of data for the automobile frame deformation caused by collision were collected and analyzed according to collision types. It was shown from the result that the frame deformation patterns were able to be roughly grouped by collision positions of vehicles. Repair plans of deformed frames could be carried on the measured data. It was shown that the deformed vehicle frames were sufficienty repaired to be normal in driving characteristics from the performance test of repaired vehicles.

Molecular Dynamics Simulation of Deformation of Polymer Resist in Nanoimpirnt Lithography (나노임프린트 리소그래피에서의 폴리머 레지스트의 변형에 관한 분자 동역학 시뮬레이션)

  • Kim Kwang-Seop;Kim Kyung-Woong;Kang Ji-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.852-859
    • /
    • 2005
  • Molecular dynamics simulations of nanoimprint lithography in which a stamp with patterns is pressed onto amorphous poly-(methylmethacrylate) (PMMA) surface are performed to study the deformation of polymer. Force fields including bond, angle, torsion, inversion, van der Waals and electrostatic potential are used to describe the intermolecular and intramolecular force of PMMA molecules and stamp. Periodic boundary condition is used in horizontal direction and Nose-Hoover thermostat is used to control the system temperature. As the simulation results, the adhesion forces between stamp and polymer are calculated and the mechanism of deformation are investigated. The effects of the adhesion and friction forces on the polymer deformation are also studied to analyze the pattern transfer in nanoimprint lithography. The mechanism of polymer deformation is investigated by means of inspecting the indentation process, molecular configurational properties, and molecular configurational energies.

Deformation and Fracture Behavioos of Soda-lime Glass by Sliding Microindentation (미끄럼 미소압입에 의한 소다석회 유리의 변형 및 파괴 거동)

  • 안유민;최상현;박상신
    • Tribology and Lubricants
    • /
    • v.13 no.4
    • /
    • pp.18-25
    • /
    • 1997
  • The various deformation and fracture behaviors under light loads in soda-lime glass under sliding Vickers indentation have been studied. In soda-lime glass, deformation and fracture behaviors can be classified into four different patterns by applied load. At very light load (<0.1N), plastic deformation only occurred. At low loads (0.1~0.8N), median crack, appear. At intermediate loads (0.8~3.0N), median and lateral cracking occurred leading to a large chipping. At high loads (3.0~6.0N), a crushed zone was observed with median crack. The friction experiment finds that the increasing in the friction coefficients coincides with the onset of crushing in soda-lime glass.

Finite element models of reinforced ECC beams subjected to various cyclic deformation

  • Frank, Timothy E.;Lepech, Michael D.;Billington, Sarah L.
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.305-317
    • /
    • 2018
  • Steel reinforced Engineered Cementitious Composite (ECC) components have been proposed for seismic structural applications, for example in coupling beams, infill panels, joints, columns, and flexural members. The development of strain in the steel reinforcement of cementitious components has been shown to vary based on both the steel reinforcement ratio and the applied deformation history. Strain in the steel reinforcement of reinforced ECC components is an important structural response metric because ultimate failure is often by fracture of the steel reinforcement. A recently proposed bond-slip model has been successfully calibrated to cyclically tested reinforced ECC beams wherein the deformation history contained monotonically increasing cycles. This paper reports simulations of two-dimensional finite element models of reinforced ECC beams to determine the appropriateness and significance of altering a phenomenological bond-slip model based on the applied deformation history. The numerical simulations with various values of post-peak bond-slip softening stiffness are compared to experimental results. Varying the post-peak bond-slip softening stiffness had little effect on the cracking patterns and hysteretic response of the reinforced ECC flexural models tested, which consisted of two different steel reinforcement ratios subjected to two different deformation histories. Varying the post-peak bond-slip softening stiffness did, however, affect the magnitude of strain and the length of reinforcing bar that strain-hardened. Overall, a numerical model with a constant bond-slip model represented well various responses in reinforced ECC beams with multiple steel reinforcement ratios subjected to different deformation histories.

Real-time condition assessment of railway tunnel deformation using an FBG-based monitoring system

  • Zhou, Lu;Zhang, Chao;Ni, Yi-Qing;Wang, Chung-Yue
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.537-548
    • /
    • 2018
  • A tunnel deformation monitoring system is developed with the use of fiber Bragg grating (FBG) sensing technique, aiming at providing continuous monitoring of railway tunnel deformation in the long term, and early warning for the rail service maintainers and authorities to avoid catastrophic consequences when significant deformation occurs. Specifically, a set of FBG bending gauges with the ability of angle measurement and temperature compensation is designed and manufactured for the purpose of online monitoring of tunnel deformation. An overall profile of lateral tunnel displacement along the longitudinal direction can be obtained by implementing an array of the FBG bending gauges interconnected by rigid rods, in conjunction with a proper algorithm. The devised system is verified in laboratory experiments with a test setup enabling to imitate various patterns of tunnel deformation before the implementation of this system in an in-service high-speed railway (HSR) tunnel.

Three dimensional deformation of dry-stored complete denture base at room temperature

  • Lim, Seo-Ryeon;Lee, Joon-Seok
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.4
    • /
    • pp.296-303
    • /
    • 2016
  • PURPOSE. The aim of this study was to evaluate whether there is any typical deformation pattern existing in complete denture when it was dried by using the 3D scanner and surface matching program. MATERIALS AND METHODS. A total of 28 denture bases were fabricated with heat curing acrylic resin (each 14 upper and lower denture bases), and 14 denture bases (each 7 upper and lower denture bases) were stored in the water bottle (water stored), and another 14 denture bases were stored in the air (dry stored). Each specimen was scanned at $1^{st}$ day after deflasking, $14^{th}$ day after deflasking, and $28^{th}$ day after deflasking, and digitalized. Three dimensional deformation patterns were acquired by comparison of the data within storage group using surface matching program. For evaluating differences between groups, these data were compared statisticallyusing Kruskal Wallis and Mann Whitney-U test (${\alpha}$=.05). RESULTS. When evaluating 3D deformation of denture base, obvious deformations were not found in maxillary and mandibular water storage group. However, in dry stored group, typical deformation pattern was detected as storage time passes. It occurred mostly in first two weeks. Major deformations were found in the bilateral posterior area in both maxillary and mandibular group. In maxillary dry stored group, a statistical significance was found. CONCLUSION. It was proved that in both upper and lower denture bases, dry storage caused more dimensional deformation than water storage with typical pattern.

2D Pattern Deformation Analysis using Particle and Spring-Damper Mesh (입자와 스프링-댐퍼 메쉬를 이용한 2차원 패턴 변형 분석)

  • Sin Bong-Kee
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.8
    • /
    • pp.769-780
    • /
    • 2005
  • This paper addresses a novel application of meshes to analyzing the deformation patterns of 2D signals. The proposed mesh is distinguished form the previous models in that it includes simulated charges in each node that interact with external charges comprising an input pattern. Therelaxation of the mesh given an input is carried out by any of the well-known numerical integration techniques. The result of the relaxation is a deformed mesh. This Paper provides four criterion functions for measuring the pattern deformation. A set of trained meshes was created from the simple average of target patterns. Experimental results show that these measures, although highly intuitive, are not good enough to capture the amount and characteristics of pattern deformation. If more sophisticated measures are found and incorporated into the relaxation process, we expect that a better and high-performance mesh framework is realized.

Deformation characteristics at the contact boundary in cylinder compression process (원기둥 압축 공정에서 접촉 경계면의 변형 특성)

  • Min, Kyung-Ho;Ko, Byung-Du;Lee, Ha-Seong
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.30-36
    • /
    • 2014
  • In this study, surface deformation patterns have been investigated by the rigid-plastic finite element method for friction factor test in solid cylinder compression process. AA1100 and AA6063 aluminum alloys, which show different work hardening characteristics respectively, have been adopted as model materials used for analysis. The main objective of this study is to provide the deformation mechanics in detail in solid cylinder compression process, especially at the die/workpiece interface that is closely related with the frictional conditions. For this reason, solid cylinder compression process has been numerically analyzed. The surface flow patterns at the contact boundary have been analyzed in terms of surface expansion, surface expansion velocity, pressure distributions exerted on the die surface along the die surface. By defining bulge factor, barreling phenomenon also have been examined with calibration curves to verify their effects on the surface flow pattern that is important for evaluating the frictional condition at the interface.

  • PDF