• 제목/요약/키워드: deformation behavior stability

검색결과 237건 처리시간 0.025초

Estimation of the excavation damage zone in TBM tunnel using large deformation FE analysis

  • Kim, Dohyun;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • 제24권4호
    • /
    • pp.323-335
    • /
    • 2021
  • This paper aims to estimate the range of the excavation damaged zone (EDZ) formation caused by the tunnel boring machine (TBM) advancement through dynamic three-dimensional large deformation finite element analysis. Large deformation analysis based on Coupled Eulerian-Lagrangian (CEL) analysis is used to accurately simulate the behavior during TBM excavation. The analysis model is verified based on numerous test results reported in the literature. The range of the formed EDZ will be suggested as a boundary under various conditions - different tunnel diameter, tunnel depth, and rock type. Moreover, evaluation of the integrity of the tunnel structure during excavation has been carried out. Based on the numerical results, the apparent boundary of the EDZ is shown to within the range of 0.7D (D: tunnel diameter) around the excavation surface. Through series of numerical computation, it is clear that for the rock of with higher rock mass rating (RMR) grade (close to 1st grade), the EDZ around the tunnel tends to increase. The size of the EDZ is found to be direct proportional to the tunnel diameter, whereas the depth of the tunnel is inversely proportional to the magnitude of the EDZ. However, the relationship between the formation of the EDZ and the stability of the tunnel was not found to be consistent. In case where the TBM excavation is carried out in hard rock or rock under high confinement (excavation under greater depth), large range of the EDZ may be formed, but less strain occurs along the excavation surface during excavation and is found to be more stable.

화산쇄설암 구간에서 터널 공사 중 장기변형거동 특성 연구 (The Characteristics of Long-term Deformation Behavior During Tunnel Excavation in the Pyroclastic Rock)

  • 장석명;한희수
    • 한국지반환경공학회 논문집
    • /
    • 제23권8호
    • /
    • pp.23-28
    • /
    • 2022
  • 우리나라 지형조건은 산악이 70%를 차지하고 있어 철도 및 도로공사 시 구조물이 차지하는 비중이 높다. 특히, 최근 들어 고속주행을 위한 고속철도와 고속도로 건설이 급증하고 있고 이와 더불어 터널 건설도 증가하고 있고 터널 굴착 완료 후 장기변형이 발생하는 터널 시공사례가 증가하는 추세이다. 이러한 터널 구조물의 안정성은 터널 굴착 주변 암반특성에 전적으로 좌우된다. 본 연구에서 대상인 화산쇄설암의 경우, 전반적으로 풍화에 취약하고 장기간에 걸쳐 강도가 저하되는 특성이 있어서 이를 고려한 터널 설계 및 시공계획 수립이 반드시 필요하다. 본 연구는 화산쇄설암 구간에 터널 현장에서 발생 된 과다변형 사례를 분석하여 향후 화산쇄설암 구간에서는 인버트 설치 및 하부보강을 고려한 방안을 제시하였다.

기초지반의 강성이 보강토 옹벽의 거동에 미치는 영향 (Effect of Foundation Stiffness on Behavior of Soil-reinforced Segmental Retaining Walls)

  • 유충식;김주석
    • 한국지반공학회논문집
    • /
    • 제18권4호
    • /
    • pp.7-19
    • /
    • 2002
  • 본 논문에서는 기초지반의 강성이 블록식 보강토 옹벽의 거동에 미치는 영향에 대한 내용을 다루었다. 기초지반의 강성이 블록식 보강토 옹벽의 거동에 미치는 근본적인 메카니즘을 고찰하기 위해 보강토 옹벽에 대한 축소모형실험을 수행하였으며 축소모형실험 결과의 타당성을 검토하고 모형실험에서 다룰 수 없었던 다양한 조건을 고려함과 아울러서 현장옹벽 응력수준의 거동을 고찰하기 위해 가상의 현장옹벽에 대해 유한요소해석을 이용한 매개변수 연구를 수행하였다. 모형실험 및 유한요소해석 결과에 의하면 기초지반의 강성이 감소할수록 벽체의 변위는 현저히 증가하며, 이러한 벽체변위 증가 현상은 보강토체 내부변형보다는 보강토체의 강체 거동으로 인해 야기되는 메카니즘을 보이는 것으로 나타나 기초지반에 관련된 문제를 외적안정성의 개념에서 다루고 있는 현 설계기준은 타당한 것으로 나타났다. 본 논문에서는 모형실험 및 유한요소해석 결과를 종합하여 실무적 측면에서의 중요성을 다각적으로 고찰하였다.

연속체 절리모델을 이용한 불연속성암반 내 지하공동의 변형거동에 관한 수치해석 (Numerical Analysis of Deformation Behaviour of Underground Opening in a Discontinuous Rock Mass Using a Continuum Joint Model)

  • 강상수;이종길;백환조
    • 지질공학
    • /
    • 제15권3호
    • /
    • pp.257-268
    • /
    • 2005
  • 일반적으로 현지 암반은 강도의 변화가 심 한 다양한 불연속면들을 포함하여 불균질하고 불연속성 을 나타낸다. 절리, 단층, 균열, 층리와 같은 불연속면들은 암반의 강도와 변형특성을 좌우하는 중요한 요인이다. 결과적으로, 지하공동의 안정성은 무결암의 역학적 특성뿐만 아니 라, 공동의 기하학적 형상과 관련하여 불연속면들의 공간적 분포와 역학적 특성에 크게 영 향을 받는다. 따라서 지하심부의 응력 조건에서의 공동설계를 위해서는 불연속 암반의 거동에 대한 정확한 이해가 필수적이다. 암반역 학 분야의 발전에 의하여 등방성 암반에서 의지 하공동 설계를 위한 기준이 제시되고 있으나, 불연속성 암반의 변형 거동은 불명확성 이 여전히 존재한다. 본 연구에서는 연속체절 리모델을 적용하여 불연속성 암반내의 지하공동 주변의 소성영역의 크기, 응력분포 및 변형거동에 대하여 매개변수의 변화에 따른 영향을 고찰하였다. Mohr-Coulomb 파괴 이론에 의한 탄소성 유한차분법을 적용하였으며, 비조합 유동법칙과 완전소성 물질거 동을 가정하였다.

암석의 강도 및 변형거동의 온도의존성에 관한 연구 (A Study on Temperature Dependency of Strength and Deformation Behavior of Rocks)

  • 이형원;이정인
    • 터널과지하공간
    • /
    • 제6권2호
    • /
    • pp.101-121
    • /
    • 1996
  • The thermomechanical characteristics of rocks such as temperature dependency of strength and deformation were experimentally investigated using Iksan granite, Cheonan tonalite and Chung-ju dolomite for proper design and stability analysis of underground structures subjected to temperature changes. For the temperature below critical threshold temperature $T_c$, the variation of uniaxial compressive strength, Young's modulus, Brazilian tensile strength and cohesion with temperature were slightly different for each rock type, but these mechanical properties decreased at the temperatures above $T_c$ by the effect of thermal cracking. Tensile strength was most affected by $T_c$, and uniaxial compressive strength was least affected by $T_c$. To the temperature of 20$0^{\circ}C$ with the confining prressure to 150 kg/$\textrm{cm}^2$, failure limit on principal stress plane and failure envelope on $\sigma$-$\tau$ plane of Iksan granite were continuously lowered with increasing temperature but those of Cheonan tonalite and Chung-ju dolomite showed different characteristics depending on minor principal stress on principal stress plane and normal stress on $\sigma$-$\tau$ plane. The reason for this appeared to be the effect of rock characteristics and confining pressure. Young's modulus was also temperature and pressure dependent, but the variation of Young's modulus was about 10%, which was small compared to the variation of compressive strength. In general, Young's modulus increased with increasing confining pressure and increased or decreased with increasing temperature to 20$0^{\circ}C$ depending on the rock type.

  • PDF

Numerical buckling temperature prediction of graded sandwich panel using higher order shear deformation theory under variable temperature loading

  • Sahoo, Brundaban;Sahoo, Bamadev;Sharma, Nitin;Mehar, Kulmani;Panda, Subrata Kumar
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.641-656
    • /
    • 2020
  • The finite element solutions of thermal buckling load values of the graded sandwich curved shell structure are reported in this research using a higher-order kinematic model including the shear deformation effect. The numerical buckling temperature has been computed using an in-house specialized code (MATLAB environment) prepared in the framework of the current mathematical formulation. In addition, the mathematical model includes the excess structural distortion under the influence of elevated environment via Green-Lagrange nonlinear strain. The corresponding eigenvalue equation has been solved to predict the critical buckling temperature of the graded sandwich structure. The numerical stability and the accuracy of the current solution have been confirmed by comparing with the available published results. Thereafter, the model is extended to bring out the influences of structural parameters i.e. the curvature ratio, core-face thickness ratio, support conditions, power-law indices and sandwich types on the thermal buckling behavior of graded sandwich curved shell panels.

전기비저항 모니터링을 이용한 터널 주변 지반상태 변화 파악 (Analysis of Ground Deformation Deformation using Resistivity Monitoring Technique at a Tunnel Excavation Area)

  • 안희윤;정재형;조인기;박삼규;김기석;정래철
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.93-100
    • /
    • 2007
  • During tunnel excavation, drawdown of groundwater table or discharge from tunnel faces may not only reduce stability of tunnel and work efficiency but cause environmental problems. We have investigated the applicability of electrical resistivity survey for the establishment of the monitoring system for groundwater behavior and detecting flow channel of groundwater during tunnel excavation. The groundwater level was continuously measured at several points for 1 year. Survey was conduted at every 3 months using preinstalled electrical resistivity cables on site. The results show that observed changes in resistivity ratios in the area can be explained with observed changes in groundwater level. Thus, we believed that electrical resistivity analysed together with groundwater data can be applied for the monitoring of groundwater in tunnel area.

  • PDF

On the static stability of nonlocal nanobeams using higher-order beam theories

  • Eltaher, M.A.;Khater, M.E.;Park, S.;Abdel-Rahman, E.;Yavuz, M.
    • Advances in nano research
    • /
    • 제4권1호
    • /
    • pp.51-64
    • /
    • 2016
  • This paper investigates the effects of thermal load and shear force on the buckling of nanobeams. Higher-order shear deformation beam theories are implemented and their predictions of the critical buckling load and post-buckled configurations are compared to those of Euler-Bernoulli and Timoshenko beam theories. The nonlocal Eringen elasticity model is adopted to account a size-dependence at the nano-scale. Analytical closed form solutions for critical buckling loads and post-buckling configurations are derived for proposed beam theories. This would be helpful for those who work in the mechanical analysis of nanobeams especially experimentalists working in the field. Results show that thermal load has a more significant impact on the buckling behavior of simply-supported beams (S-S) than it has on clamped-clamped (C-C) beams. However, the nonlocal effect has more impact on C-C beams that it does on S-S beams. Moreover, it was found that the predictions obtained from Timoshenko beam theory are identical to those obtained using all higher-order shear deformation theories, suggesting that Timoshenko beam theory is sufficient to analyze buckling in nanobeams.

한옥건축물의 건조방법에 따른 외진 노출 기둥의 함수율 및 균열 양상에 관한 연구 (A Study on the Moisture Content and Cracking Behavior of out side Exposed columns According to Drying Methods of Hnaok Buildings)

  • 김윤상
    • 한국농촌건축학회논문집
    • /
    • 제21권1호
    • /
    • pp.37-44
    • /
    • 2019
  • Recently, various tourist products using hanok have increased rapidly. In the meantime, there is a steady demand for Hanok architecture. However, there are many negative perceptions about wood deformation and biodeterioration. Wood deformation and biodeterioration are related to moisture content. And the cracks occur in the process of removing water from the wood. Therefore, this study investigates the moisture content and cracks of dried hanok made of wood according to the drying method of wood. Drying methods include natural seasoning and artificial seasoning. There was a difference in moisture removal depending on drying period and method of natural seasoning. Drying time should be about 3 years for natural seasoning, so the moisture content of the wood is stable. In addition, the moisture absorption rate was low even in a humid environment where the voids were removed. However, natural seasoning is time consuming. Artificial seasoning, on the other hand, can quickly remove moisture from the wood and reduce porosity, but it is costly. Cracks that occur during the drying of wood may become problematic in appearance and stability due to wider spacing over time. As a result, the difference in the moisture content of the timber depending on the drying method and drying period of the wood was maintained even after the formation. These gaps appeared to be differences in moisture absorption in a wet environment.

Ductile capacity study of buckling-restrained braced steel frame with rotational connections

  • Mingming Jia;Jinzhou He;Dagang Lu
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.417-433
    • /
    • 2023
  • The maximum ductility and cumulative ductility of connection joints of Buckling-Restrained Braced Frames (BRBF) are critical to the structural overall performance, which should be matched with the BRB ductility. The two-story and one-span BRBF with a one-third scale was tested under cyclic quasi-static loading, and the top-flange beam splice (TFBS) rotational connections were proposed and adopted in BRBF. The deformation capacity of TFBS connections was observed during the test, and the relationship between structural global ductility and local connection ductility was studied. The rotational capacity of the beam-column connections and the stability performance of the BRBs are highly relevant to the structural overall performance. The hysteretic curves of BRBF are stable and full under large displacement demand imposed up to 2% story drift, and energy is dissipated as the large plastic deformation developed in the structural components. The BRBs acted as fuses and yielded first, and the cumulative plastic ductility (CPD) of BRBs is 972.6 of the second floor and 439.7 of the first floor, indicating the excellent energy dissipation capacity of BRBs. Structural members with good local ductility ensure the large global ductility of BRBF. The ductile capacity and hysteretic behavior of BRBF with TFBS connections were compared with those of BRBF with Reduced Beam Section (RBS) connections in terms of the experimental results.