• Title/Summary/Keyword: deformation behavior stability

Search Result 237, Processing Time 0.027 seconds

Estimation of the excavation damage zone in TBM tunnel using large deformation FE analysis

  • Kim, Dohyun;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.323-335
    • /
    • 2021
  • This paper aims to estimate the range of the excavation damaged zone (EDZ) formation caused by the tunnel boring machine (TBM) advancement through dynamic three-dimensional large deformation finite element analysis. Large deformation analysis based on Coupled Eulerian-Lagrangian (CEL) analysis is used to accurately simulate the behavior during TBM excavation. The analysis model is verified based on numerous test results reported in the literature. The range of the formed EDZ will be suggested as a boundary under various conditions - different tunnel diameter, tunnel depth, and rock type. Moreover, evaluation of the integrity of the tunnel structure during excavation has been carried out. Based on the numerical results, the apparent boundary of the EDZ is shown to within the range of 0.7D (D: tunnel diameter) around the excavation surface. Through series of numerical computation, it is clear that for the rock of with higher rock mass rating (RMR) grade (close to 1st grade), the EDZ around the tunnel tends to increase. The size of the EDZ is found to be direct proportional to the tunnel diameter, whereas the depth of the tunnel is inversely proportional to the magnitude of the EDZ. However, the relationship between the formation of the EDZ and the stability of the tunnel was not found to be consistent. In case where the TBM excavation is carried out in hard rock or rock under high confinement (excavation under greater depth), large range of the EDZ may be formed, but less strain occurs along the excavation surface during excavation and is found to be more stable.

The Characteristics of Long-term Deformation Behavior During Tunnel Excavation in the Pyroclastic Rock (화산쇄설암 구간에서 터널 공사 중 장기변형거동 특성 연구)

  • Jang, Sukmyung;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.23-28
    • /
    • 2022
  • In Korea, 70% of the land is mountainous and structures occupy a high proportion in railway and road construction. In particular, in recent years, the construction of high-speed railways and highways for high-speed driving is rapidly increasing. At the same time, the construction of tunnels is also increasing. The number of tunnel construction cases in which long-term deformation occurs after tunnel excavation is completed is increasing. The stability of these tunnel structures depends entirely on the characteristics of the rock surrounding the tunnel excavation. In the case of pyroclastic rock, which is the subject of this study, it is generally vulnerable to weathering and has a characteristic that its strength decreases over a long period of time. Tunnel design and construction planning considering the strength characteristics of pyroclastic rocks are essential. This study analyzed the cases of over-deformation that occurred at the tunnel site in the pyroclastic section. Based on this study, a plan for tunnel design and construction management in an area where pyroclastic rock exist in the future is presented.

Effect of Foundation Stiffness on Behavior of Soil-reinforced Segmental Retaining Walls (기초지반의 강성이 보강토 옹벽의 거동에 미치는 영향)

  • 유충식;김주석
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.7-19
    • /
    • 2002
  • This paper presents the results of an investigation on the effect of foundation stiffness on the performance of soil-reinforced segmental retaining walls (SRWalls). Laboratory model tests were performed using a reduced-scale physical model to capture the fundamentals of the manner in which the foundation stiffness affects the behavior of SRWalls. A series of finite-element analyses were additionally performed on a prototype wall in order to supplement the findings from the model tests and to examine full-scale behavior of SRWalls encountered in the field. The results of the present investigation indicate that lateral wall displacements significantly increase with the decrease of the foundation stiffness. Also revealed is that the increase in wall displacements is likely to be caused by the rigid body movement of the reinforced soil mass with negligible internal deformation within the reinforced soil mass. The findings from this study support the current design approaches, in which the problem concerning the foundation condition are treated in the frame work of the external stability rather than the internal stability. The implications of the findings from this study to current design approaches are discussed in detail.

Numerical Analysis of Deformation Behaviour of Underground Opening in a Discontinuous Rock Mass Using a Continuum Joint Model (연속체 절리모델을 이용한 불연속성암반 내 지하공동의 변형거동에 관한 수치해석)

  • Kang Sang Soo;Lee Jong-Kil;Baek Hwanjo
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.257-268
    • /
    • 2005
  • In situ rock mass is generally heterogeneous and discontinuous, with varying degrees of strength along the planes of weakness. The planes of weakness such as joints, faults, cracks and bedding planes, control the strength and deformation characteristics of the rock mass. Subsequently, the stability of underground opening depends upon the spatial distribution of discontinuities and their mechanical properties in relation with geometrical shape of openins as well as the mechanical properties of intact rock materials. Understanding the behaviour of a discontinuous rock mass remains a key issue for improving excavation design in hiかy stressed environments. Although recent advances in rock mechanics have provided guidelines for the design of underground opening in isotropic rock mass, prediction and control of deformation in discontinuous rock masses are still unclear. In this study, parametric study was performed to investigate the plastic zone size, stress distribution and deformation behavior around underground opening in a discontinuous rock mass using a continuum joint model. The solutions were obtained by an elasto-plastic finite difference analysis, employing the Mohr-Coulomb failure criteria. Non-associated flow rule and perfectly plastic material behavior are also assumed.

A Study on Temperature Dependency of Strength and Deformation Behavior of Rocks (암석의 강도 및 변형거동의 온도의존성에 관한 연구)

  • 이형원;이정인
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.101-121
    • /
    • 1996
  • The thermomechanical characteristics of rocks such as temperature dependency of strength and deformation were experimentally investigated using Iksan granite, Cheonan tonalite and Chung-ju dolomite for proper design and stability analysis of underground structures subjected to temperature changes. For the temperature below critical threshold temperature $T_c$, the variation of uniaxial compressive strength, Young's modulus, Brazilian tensile strength and cohesion with temperature were slightly different for each rock type, but these mechanical properties decreased at the temperatures above $T_c$ by the effect of thermal cracking. Tensile strength was most affected by $T_c$, and uniaxial compressive strength was least affected by $T_c$. To the temperature of 20$0^{\circ}C$ with the confining prressure to 150 kg/$\textrm{cm}^2$, failure limit on principal stress plane and failure envelope on $\sigma$-$\tau$ plane of Iksan granite were continuously lowered with increasing temperature but those of Cheonan tonalite and Chung-ju dolomite showed different characteristics depending on minor principal stress on principal stress plane and normal stress on $\sigma$-$\tau$ plane. The reason for this appeared to be the effect of rock characteristics and confining pressure. Young's modulus was also temperature and pressure dependent, but the variation of Young's modulus was about 10%, which was small compared to the variation of compressive strength. In general, Young's modulus increased with increasing confining pressure and increased or decreased with increasing temperature to 20$0^{\circ}C$ depending on the rock type.

  • PDF

Numerical buckling temperature prediction of graded sandwich panel using higher order shear deformation theory under variable temperature loading

  • Sahoo, Brundaban;Sahoo, Bamadev;Sharma, Nitin;Mehar, Kulmani;Panda, Subrata Kumar
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.641-656
    • /
    • 2020
  • The finite element solutions of thermal buckling load values of the graded sandwich curved shell structure are reported in this research using a higher-order kinematic model including the shear deformation effect. The numerical buckling temperature has been computed using an in-house specialized code (MATLAB environment) prepared in the framework of the current mathematical formulation. In addition, the mathematical model includes the excess structural distortion under the influence of elevated environment via Green-Lagrange nonlinear strain. The corresponding eigenvalue equation has been solved to predict the critical buckling temperature of the graded sandwich structure. The numerical stability and the accuracy of the current solution have been confirmed by comparing with the available published results. Thereafter, the model is extended to bring out the influences of structural parameters i.e. the curvature ratio, core-face thickness ratio, support conditions, power-law indices and sandwich types on the thermal buckling behavior of graded sandwich curved shell panels.

Analysis of Ground Deformation Deformation using Resistivity Monitoring Technique at a Tunnel Excavation Area (전기비저항 모니터링을 이용한 터널 주변 지반상태 변화 파악)

  • Ahn, Hee-Yoon;Jeong, Jae-Hyeung;Cho, In-Ky;Park, Sam-Gyu;Kim, Ki-Seog;Jung, Lae-Chul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.93-100
    • /
    • 2007
  • During tunnel excavation, drawdown of groundwater table or discharge from tunnel faces may not only reduce stability of tunnel and work efficiency but cause environmental problems. We have investigated the applicability of electrical resistivity survey for the establishment of the monitoring system for groundwater behavior and detecting flow channel of groundwater during tunnel excavation. The groundwater level was continuously measured at several points for 1 year. Survey was conduted at every 3 months using preinstalled electrical resistivity cables on site. The results show that observed changes in resistivity ratios in the area can be explained with observed changes in groundwater level. Thus, we believed that electrical resistivity analysed together with groundwater data can be applied for the monitoring of groundwater in tunnel area.

  • PDF

On the static stability of nonlocal nanobeams using higher-order beam theories

  • Eltaher, M.A.;Khater, M.E.;Park, S.;Abdel-Rahman, E.;Yavuz, M.
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.51-64
    • /
    • 2016
  • This paper investigates the effects of thermal load and shear force on the buckling of nanobeams. Higher-order shear deformation beam theories are implemented and their predictions of the critical buckling load and post-buckled configurations are compared to those of Euler-Bernoulli and Timoshenko beam theories. The nonlocal Eringen elasticity model is adopted to account a size-dependence at the nano-scale. Analytical closed form solutions for critical buckling loads and post-buckling configurations are derived for proposed beam theories. This would be helpful for those who work in the mechanical analysis of nanobeams especially experimentalists working in the field. Results show that thermal load has a more significant impact on the buckling behavior of simply-supported beams (S-S) than it has on clamped-clamped (C-C) beams. However, the nonlocal effect has more impact on C-C beams that it does on S-S beams. Moreover, it was found that the predictions obtained from Timoshenko beam theory are identical to those obtained using all higher-order shear deformation theories, suggesting that Timoshenko beam theory is sufficient to analyze buckling in nanobeams.

A Study on the Moisture Content and Cracking Behavior of out side Exposed columns According to Drying Methods of Hnaok Buildings (한옥건축물의 건조방법에 따른 외진 노출 기둥의 함수율 및 균열 양상에 관한 연구)

  • Kim, Yun-Sang
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.21 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • Recently, various tourist products using hanok have increased rapidly. In the meantime, there is a steady demand for Hanok architecture. However, there are many negative perceptions about wood deformation and biodeterioration. Wood deformation and biodeterioration are related to moisture content. And the cracks occur in the process of removing water from the wood. Therefore, this study investigates the moisture content and cracks of dried hanok made of wood according to the drying method of wood. Drying methods include natural seasoning and artificial seasoning. There was a difference in moisture removal depending on drying period and method of natural seasoning. Drying time should be about 3 years for natural seasoning, so the moisture content of the wood is stable. In addition, the moisture absorption rate was low even in a humid environment where the voids were removed. However, natural seasoning is time consuming. Artificial seasoning, on the other hand, can quickly remove moisture from the wood and reduce porosity, but it is costly. Cracks that occur during the drying of wood may become problematic in appearance and stability due to wider spacing over time. As a result, the difference in the moisture content of the timber depending on the drying method and drying period of the wood was maintained even after the formation. These gaps appeared to be differences in moisture absorption in a wet environment.

Ductile capacity study of buckling-restrained braced steel frame with rotational connections

  • Mingming Jia;Jinzhou He;Dagang Lu
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.417-433
    • /
    • 2023
  • The maximum ductility and cumulative ductility of connection joints of Buckling-Restrained Braced Frames (BRBF) are critical to the structural overall performance, which should be matched with the BRB ductility. The two-story and one-span BRBF with a one-third scale was tested under cyclic quasi-static loading, and the top-flange beam splice (TFBS) rotational connections were proposed and adopted in BRBF. The deformation capacity of TFBS connections was observed during the test, and the relationship between structural global ductility and local connection ductility was studied. The rotational capacity of the beam-column connections and the stability performance of the BRBs are highly relevant to the structural overall performance. The hysteretic curves of BRBF are stable and full under large displacement demand imposed up to 2% story drift, and energy is dissipated as the large plastic deformation developed in the structural components. The BRBs acted as fuses and yielded first, and the cumulative plastic ductility (CPD) of BRBs is 972.6 of the second floor and 439.7 of the first floor, indicating the excellent energy dissipation capacity of BRBs. Structural members with good local ductility ensure the large global ductility of BRBF. The ductile capacity and hysteretic behavior of BRBF with TFBS connections were compared with those of BRBF with Reduced Beam Section (RBS) connections in terms of the experimental results.