• Title/Summary/Keyword: deformation banding

Search Result 10, Processing Time 0.027 seconds

Effects of Crystallographic Orientation and Precipitates on Cold Rolling Behavior of Ni/Ni3Al Single Crystal (Ni/Ni3Al 단결정의 냉간압연 거동에 미치는 결정방위 및 석출물의 영향)

  • Song, S.H.;Wee, D.M.;Park, No-Jin;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • In this study, thin foil fabrication using Ni/Ni3Al single crystal was performed by cold-rolling. It was found that the cold-rolling behavior was strongly dependent on the initial crystallographic orientation rather than morphology of Ni3Al precipitates. The deformation banding was formed in the case of (100)[001]- and (210)[001]-oriented specimens at 83% reduction in thickness. However, the effects of Ni3Al precipitates morphology on the microstructure evolution of Ni/Ni3Al single crystals during cold-rolling were not so serious comparing with the effects of initial crystallographic orientation. Therefore, it could be concluded that the deformation behavior of Ni/Ni3Al single crystals at serious strain level was strongly dependent on the initial crystallographic orientation rather than the morphology of Ni3Al precipitates, whereas the initial deformation behavior was related to both crystallographic orientation and the morphology of Ni3Al precipitates.

Toward Improving the Dynamic Deformation Properties of Metallic Materials via Role of Microstructure Factor (미세조직 인자의 영향을 고려한 금속 소재의 동적변형 특성 향상에 관한 연구)

  • Kim, Y.G.;Hwang, B.;Lee, D.G.;Ko, Y.G.;Lee, S.
    • Transactions of Materials Processing
    • /
    • v.30 no.5
    • /
    • pp.247-254
    • /
    • 2021
  • This study reviews dynamic deformation behavior of ultra-fine-grained Al alloys, ultra-fine-grained conventional low carbon steel and dual phase steel and Zr-based amorphous alloys. Dynamic tests were conducted using a Kolsky bar then the test data was analyzed in relation to resultant microstructures, mechanical properties and propensity of adiabatic shear band. In addition, deformed microstructures and fracture surfaces were used to investigate the behavior of both the dynamic deformation and fracture, and adiabatic shear banding. As a result, increasing microstructural homogeneity, strain hardenability and forming multiple shear bands could be a better way to increase the fracture resistance under dynamic loading as the formation of adiabatic shear bands was reduced or prevented.

Understanding of the Shear Bands in Amorphous Metals

  • Park, Eun Soo
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.63-73
    • /
    • 2015
  • Shear banding is an evidence of plastic instability that localizes large shear strains in a relatively thin band when a material is plastically deformed. Shear bands have attracted much attention in amorphous metals, because shear bands are the key feature that controls the plastic deformation process. In this article, we review recent advances in understanding of the shear bands in amorphous metals regarding: dislocations versus shear bands, the formation of shear bands, hot versus cold shear bands, and property manipulation by shear band engineering. Although there are many key issues that remain puzzling, the understanding built-up from these approaches will provide a new insight for tailoring shear bands in amorphous metals, which potentially leads to unique property changes as well as improved mechanical properties. Indeed, this effort might open a new era to the future use of amorphous metals as a new menu of engineering materials.

High performance ultrafine-grained Ti-Fe-based alloys with multiple length-scale phases

  • Zhang, Lai-Chang
    • Advances in materials Research
    • /
    • v.1 no.1
    • /
    • pp.13-29
    • /
    • 2012
  • In order to simultaneously enhance the strength and plasticity in nanostructured / ultrafine-grained alloys, a strategy of introducing multiple length scales into microstructure (or called bimodal composite microstructure) has been developed recently. This paper presents a brief overview of the alloy developement and the mechanical behavior of ultrafine-grained Ti-Fe-based alloys with different length-scale phases, i.e., micrometer-sized primary phases (dendrites or eutectic) embedded in an ultrafine-grained eutectic matrix. These ultrafine-grained titanium bimodal composites could be directly obtained through a simple single-step solidification process. The as-prepared composites exhibit superior mechanical properties, including high strength of 2000-2700 MPa, large plasticity up to 15-20% and high specific strength. Plastic deformation of the ultrafine-grained titanium bimodal composites occurs through a combination of dislocation-based slip in the nano-/ultrafine scale matrix and constraint multiple shear banding around the micrometer-sized primary phase. The microstructural charactersitcs associated to the mechanical behaivor have been detailed discussed.

Enhanced Plasticity of Bulk Amorphous Alloys at Cryogenic Temperature (벌크 비정질 합금의 초저온 소성)

  • Yoon, Kyeu-Sang;Lee, Mirim;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.699-704
    • /
    • 2010
  • We investigated the cryogenic temperature plasticity of a bulk amorphous alloy. Experiments showed that as temperature decreases, the plasticity of the alloy increases, such that the alloy exhibited ~20% of plastic strain when tested at $-196^{\circ}C$. This enhancement in the plasticity at cryogenic temperatures was associated with the formation of abundant shear bands distributed uniformly over the entire surface of the sample. Nonetheless, the serrations, the characteristic feature of the plastic deformation of amorphous alloys, were unclear at $-196^{\circ}C$. In this study, both the enhanced plasticity and the unclear serrations exhibited by the amorphous alloy at cryogenic temperatures were clarified by exploring shear banding behaviors in the context of the velocity and the viscosity of a propagating shear band.

Assessment of Shear Band Characteristics in Granular Soils Using Digital Image Analysis Technique for Plane Strain Tests (평면변형률 시험에서 이미지 해석을 통한 사질토의 전단면 특성 평가)

  • Jang, Eui-Ryong;Jung, Young-Hoon;Kim, Jun-Young;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.4
    • /
    • pp.51-65
    • /
    • 2011
  • Shear banding, the localization of deformation into thin zones, has a quite practical relevance, as stability and deformation characteristics of earth structures are controlled by the soil behavior within the shear band. In this study, for understanding occurrence and developed pattern of shear band, plane strain compression tests were performed on three soils with different particle-size distribution under various conditions. Digital images were captured during the experiments; then, deformation of a specimen was evaluated by digital image analysis technique. The characteristics of a shear band were evaluated from the state shortly after post-peak occurrence to critical state. Additionally, the statistical procedure was developed to determine the reasonable thickness of a shear band.

Omnipresence of Strain Localization in Soils (흙의 변형국지화 편재에 관한 연구)

  • 권태혁;조계춘
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.199-210
    • /
    • 2003
  • The development of strain localization within shear zones is frequently observed during soil deformation. In fact, the phenomenon appears to be more often the norm rather than the exception. Conceptually, any soil condition that renders negative work increment is prone to localization. In this study, a broad range of soil and loading conditions are investigated to test this criterion, including: dilative soil subjected to drained shear (standard case), contractive soil sheared under undrained conditions, cavitation in dilative soil in undrained shear, inhomogeneous soils, particle alignment in contractive soils made of platy particles, soils that experience particle crushing, and the shear of low-moisture and/or lightly cemented loose soils. Unique specimens and test procedures are designed to separately test each of these soil conditions in the laboratory According to experimental test results, soil specimens with post-peak strain softening behavior are prone to progressive failure, localization of deformations, and shear banding. The state of stress, the soil density, inherent mechanical and geometrical properties of soil particles, low water content, and heterogeneity can contribute to triggering strain localization. Considering all possible cases of localization, the best method to obtain the critical state line in the laboratory is to use contractive homogeneous specimens subjected to drained shear.

Lithology and Geology of Deokjeok Island, Western Gyeonggi Massif, Central Korea (서부 경기육괴에 위치한 덕적도의 암상과 지질)

  • Aum, Hyun Woo;Kim, Yoonsup;Cheong, Wonseok
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.263-272
    • /
    • 2013
  • We investigated the lithology and petrography of granites and metasedimentary rocks in Deokjeok Island at the western margin of the Gyeonggi massif. The major lithology comprises the biotite granite that intrudes all other types of rocks. A minor amount of mylonitized porphyritic granite crops out along the southeastern coast. Metasedimentary rocks in the north are further divided into: (1) sheared quartzite-schist to the northeast; and (2) relatively less-deformed, low-grade metasedimentary rocks to the northwest. The former contains quartz grains showing undulatory extinction and subgrain aggregates as well as minor amount of primary chlorite and biotite in the muscovite-rich matrix. Metamorphic condition belongs to the greenschist facies or the biotite zone. On the other hand, the latter unit consists of meta-conglomerate, meta-sandstone, meta-pelite, and black slate. Regardless of the lithology, the intensity of deformation apparently increases eastward to develop the flow banding of quartz in the shear zone.

Experimental Studies of Characteristics of Strength and Deformation Behaviour of Frozen and Cyclic Frozen-thawed Clayey Soils (동결 및 동결-융해작용을 받는 점성토의 강도와 그의 변형거동)

  • 유능환;유영선;유연택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.2
    • /
    • pp.112-119
    • /
    • 1991
  • Some experiments were carried out to investigate the effects of freezing and thawing on the strength and strain characteristics of alluvial silty clay under the different temperatures, loading and moisture conditions. The results were as follows; 1. The soil used was proved to be consisted of silty clay with honey-combed structure, and showed higher dilatancy, frost activity and lower stability in natural state. 2. Soil treated with freezing and thawing cycles showed lower compressive strength compared with the non treated, The strength decreased with incement of freezing and thawing cycles. It's shapes of stress-strain curves were flat and did not formulate a peak while the peak strength of higher moisture content soil decreased with the increment of moisture content. It's decrement ratio was most distinctly shown at the first one cycle of freezing and thawing. 3. The cohesion decreased due to freezing and thawing cycles but internal frcition angle was not changed. 4. The liquid limit decreased with increment of freezing and thawing cycles, and became almost constant after three cycles of freezing and thawing. 5. The strength under simple loading at failure mode was appeared to be higher compared with the cyclic loading after freezing and thawing but initial moisture content effect was not observed. 6. Ice lense was not observed within 50% of ice content ratio but observed over 100%. The higher the ice content ratio, the higher the peak strength. As a matter of fact, it seems that an optimum ice content ratio exists for plastic mode and the least compressive strength.

  • PDF

Evaluation of Steel-Pipe Connections in Plastic Greenhouse Using Bending Test (플라스틱 온실의 강관 이음부 휨성능 분석)

  • Choi, Man-Kwon;Ryu, Hee-Ryong;Cho, Myeong-Whan;Yu, In-Ho
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.391-399
    • /
    • 2018
  • In this paper, experimental study performed on steel-pipe connections for structural members of a greenhouse is presented. By those experiments performed, bending moment, deformation and stress distribution of specimens were investigated under four point bending test. The bending performance according to connection method using pin and the stretching is also investigated. The results of bending performance of the no connection specimen were compared to those of other connection specimens. The pin and stretching connection specimens showed lower banding performance than the no connection specimen. The stretching connection method was relatively higher bending performance than the pin connection specimens. According to the results, we proposed the connection method with good bending performance that can be applied to steel-pipe connection in greenhouse.