• Title/Summary/Keyword: deflection simulation

Search Result 298, Processing Time 0.027 seconds

Optimal Cutting Condition in Side Wall Milling Considering Form Accuracy (측벽 엔드밀 가공에서 형상 정밀도를 고려한 최적 절삭 조건)

  • 류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, optimal cutting condition to minimize the form error in side wall machining with a flat end mill is studied. Cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting such as roughing. Using the form error prediction method from tool deflection, optimal cutting condition considering form accuracy is investigated. Also, the effects of tool teeth number, tool geometry and cutting conditions on form error are analyzed. The characteristics and the difference of generated surface shape in up and down milling are discussed and over-cut free condition in up milling is presented. Form error reduction method through successive up and down milling is also suggested. The effectiveness and usefulness of the presented method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that form error prediction from tool deflection in side wall machining can be used in optimal cutting condition selection and real time surface error simulation for CAD/CAM systems. This study also contributes to cutting process optimization for the improvement of form accuracy especially in precision die and mold manufacturing.

A Pacemaker AutoSense Algorithm with Dual Thresholds

  • Kim, Jung-Kuk;Huh, Woong
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.6
    • /
    • pp.477-484
    • /
    • 2002
  • A pacemaker autosense algorithm with dual thresholds. one for noise or tachyarrhythmia detection (noise threshold, NT) and the other for intrinsic beat detection (sensing threshold. ST), was developed to improve the sensing performance in single pass VDD electrograms. unipolar electrograms, or atrial fibrillation detection. When a deflection in an electrogram exceeds the NT (defined as 50% of 57), the autosense algorithm with dual thresholds checks if the deflection also exceeds the ST. If it does, the autosense algorithm calculates the signal to noise ratio (SNR) of the deflection to the highest deflection detected by NT but lower than ST during the last cardiac cycle. If the SNR 2, the autosense algorithm declares an intrinsic beat detection and calculates the next ST based on the three most recent intrinsic peaks. If the SNR $\geq$2, the autosense algorithm checks the number of deflections detected by NT during the last cardiac cycle in order to determine if it is a noise detection or tachyarrhythmia detection. Usually the autosense algorithm tries to set the 57 at 37.5% of the average of the three intrinsic beats, although it changes the percentage according to event classifications. The autosense algorithm was tested through computer simulation of atrial electrograms from 5 patients obtained during EP study, to simulate a worst sensing situation. The result showed that the ST levels for autosense algorithm tracked the electrogram amplitudes properly, providing more noise immunity whenever necessary. Also, the autosense algorithm with dual thresholds achieved sensing performance as good as the conventional fixed sensitivity method that was optimized retrospectively.

Comparison of Reliability of PSSC Girder Bridge for Different Limit States (PSSC 거더 교량의 한계상태별 신뢰도 비교)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.171-180
    • /
    • 2007
  • Reliability analysis of prestressed steel and concrete(PSSC) girders is conducted for deflection, stress and moment strength limit state. PSSC girder has strong advantages in terms of construction cost and vertical clearance for the span length of over 40 meters. In this paper, example PSSC girders with different span lengths, section dimensions and design stress levels are designed and analyzed to calculate the midspan deflection, stress and the section moment strength. Deflection limit state, stress limit state and strength limit state functions are assumed and the reliability indexes are obtained by Monte-Carlo simulation and Rackwitz-Fiessler procedure. The results show that the reliability of PSSC girder for deflection limit state is appropriately higher than the stress limit state and the reliability for moment strength is significantly conservative.

FE modelling of low velocity impact on RC and prestressed RC slabs

  • Ganesan, Partheepan;Kumar, S. Venkata Sai
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.515-524
    • /
    • 2019
  • The present study deals with the simulation of low velocity impact on prestressed and reinforced concrete (RC) slabs supported with different end conditions. The prestress is pre-applied on the RC slab in an analytical approach for the prestressed slab. RC slabs with dimensions $500{\times}600{\times}60mm$, $500{\times}600{\times}80mm$ and $500{\times}600{\times}120mm$ were used by changing support condition in two different ways; (i) Opposite sides simply supported, (ii) Adjacent sides simply supported with opposite corner propped. Deflection response of these specimens were found for the impact due to three different velocities. The effect of grade of concrete on deflection due to the impact of these slabs were also studied. Deflection result of $500{\times}500{\times}50mm$ slab was calculated numerically and compared the result with the available experimental result in literature. Finite element analyses were performed using commercially available ANSYS 16.2 software. The effectiveness of prestressing on impact resistant capacity of RC slabs are demonstrated by the way of comparing the deflection of RC slabs under similar impact loadings.

Determination of the Static Rigidity of the End Mill Using Neural Network (신경망을 이용한 엔드밀의 정적 강성 결정)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.143-152
    • /
    • 1997
  • The deflection of an end mill is very important in machining process and cutting simulation because it affects directly workpiece accuracy, cutting force, and chattering. In this study, the deflection of the end mill was studied both experimentally and by using finite element analysis. And the moment of inertia of cross sections of the helical end mill is calculated for the determination of the relation between geometry of radial cross section and rigidity of the tools. Using the Bernoulli-Euler beam theory and the concept of equivalent diameter, a deflection model is established, which includes most influences from tool geomety parameters. It was found that helix angle attenuates the rigidity of the end mill by the finite element analysis. As a result, the equivalent diameter is determined by tooth number, inscribed diameter ratio, cross sectional geometry and helix angle. Because the relation betweem equivalent diameter and each factor is nonlinear, neural network is used to decide the equivalent diameter. Input patterns and desired outputs for the neural network are obtained by FEM analysis in several case of end milling operations.

  • PDF

Development of A Methodology for In-Reactor Fuel Rod Supporting Condition Prediction (노내 연료봉 지지조건 예측 방법론 개발)

  • Kim, K. T.;Kim, H. K.;K. H. Yoon
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.17-26
    • /
    • 1996
  • The in-reactor fuel rod support conditions against the fretting wear-induced damage can be evaluated by residual spacer grid spring deflection or rod-to-grid gap. In order to evaluate the impact of fuel design parameters on the fretting wear-induced damage, a simulation methodology of the in-reactor fuel rod supporting conditions as a function of burnup has been developed and implemented in the GRIDFORCE program. The simulation methodology takes into account cladding creep rate, initial spring deflection, initial spring force, and spring force relaxation rate as the key fuel design parameters affecting the in-reactor fuel rod supporting conditions. Based on the parametric studies on these key parameters, it is found that the initial spring deflection, the spring force relaxation rate and cladding creepdown rate are in the order of the impact on the in-reactor fuel rod supporting conditions. Application of this simulation methodology to the fretting wear-induced failure experienced in a commercial plant indicates that this methodology can be utilized as an effective tool in evaluating the capability of newly developed cladding materials and/or new spacer grid designs against the fretting wear-induced damage.

  • PDF

Direct Numerical Simulation of Active Fiber Composite (능동 섬유 복합재의 직접적 수치 모사)

  • 백승훈;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.5-9
    • /
    • 2003
  • Stress and deflection of Active Fiber Composite(AFC) embedded and/or attached composite structures are numerically investigated at the constituent level by the Direct Numerical Simulation(DNS). The DNS approach which models and simulates the fiber and matrix directly using 3D finite elements need to be solved by efficient way. To handle this large scale problem, parallel program for solving piezoelectric behavior was developed and run on the parallel computing environment. Also, the stress result from DNS approach is compared with that from uniform field model.

  • PDF

Analysis of Flow Characteristics of Multilayer Type Piezo Valve (적층형 압전밸브의 유동특성 해석)

  • Kim, Jae-Min;Lee, Jong-Choon;Yoon, Suk-Jin;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.946-949
    • /
    • 2003
  • This paper reports on the fluid flow simulation results of a multilayer type piezoelectric valve. The mechanical and fluidic analysis are done by finite element method. The designed structure is normally closed type using buckling effect, which is consist of three separate structures; a valve seat die, an actuator die and a MLCA(Multilayer Type Ceramic Actuator). It is confirmed that the complete laminar flow and the lowest flow leakage are strongly depend on the valve seat geometry. In addition, turbulent flow was occurs in valve outlet according to increase seat dimension, height and inlet pressure. From this, we was deducts the optimum geometry of the valve seat and diaphragm deflection that have an great influence fluid flow in valve. Thus, it is expected that our simulation results would be apply for piezoelectric applications such as valve and pump, fluidic control systems.

  • PDF

A Numerical and Experimental Study of Surface Deflections in Automobile Exterior Panels (자동차 외판의 미세면굴곡 거동의 수치해석적 평가)

  • Park, Chun-Dal;Chung, Wan-Jin;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.134-141
    • /
    • 2006
  • Surface deflections have a great effect on the external appearance of automobiles. Usually, they are occurred on large flat panels containing sudden shape changes and of very small size about $\pm$30$\sim$300$\mu$m. Since the current numerical method is not sufficient for predicting these defects, the correction of these defects still depends on trial and error, which requires a great deal of time and expense. Consequently, developing the numerical method to predict and prevent these defects is very important far improving cosmetic surface qualities. In this study, an evaluation system that can analyze surface deflections using numerical simulation and a visualization system are reported. To calculate the surface deflections numerically, robust algorithms and simulation methodologies are suggested and to visualize them quantitatively, the curvature variation algorithm is proposed. To verify the developed systems, the experimental die of the handle portion of exterior door is analyzed. The results showed that the experimental and simulational visualization are in good agreement. Compensation methods to correct the surface deflections are also tested. The evaluation system proposed in this paper could be used to predict and minimize the occurrence of surface deflections in die manufacturing.

Mesoscale computational simulation of the mechanical response of reinforced concrete members

  • Wang, Licheng;Bao, Jiuwen
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.305-319
    • /
    • 2015
  • On mesoscopic level, concrete can be treated as a three-phase composite material consisting of mortar, aggregates and interfacial transition zone (ITZ) between mortar and aggregate. A lot of research has confirmed that ITZ plays a crucial role in the mechanical fracture process of concrete. The aim of the present study is to propose a numerical method on mesoscale to analyze the failure mechanism of reinforced concrete (RC) structures under mechanical loading, and then it will help precisely predict the damage or the cracking initiation and propagation of concrete. Concrete is meshed by means of the Rigid Body Spring Model (RBSM) concept, while the reinforcing steel bars are modeled as beam-type elements. Two kinds of RC members, i.e. subjected to uniaxial tension and beams under bending, the fracture process of concrete and the distribution of cracks, as well as the load-deflection relationships are investigated and compared with the available test results. It is found that the numerical results are in good agreement with the experimental observations, indicating that the model can successfully simulate the failure process of the RC members.