• Title/Summary/Keyword: deflection rates

Search Result 31, Processing Time 0.03 seconds

The Mechanical Behavior and the Anatomical Changes of Wood due to Variation of Deflection Rates

  • Kang, Chun Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.7-12
    • /
    • 2005
  • The objective of this study is to estimate the mechanical behavior in bending and the anatomical changes of wood under several deflection rates. Sample specimens of water-saturated Japanese cedar (Cryptomeria japonica) were stressed to rupture under several deflection rates. Mechanical properties of wood such as modulus of elasticity, modulus of rupture and stress at proportional limit, and anatomical changes affected by deflection rates were estimated. Microscopic observations on compression side of the test specimens when the specimen was loaded to rupture were carried out by the SEM (scanning electron microscopy). The results are summarized as follows: 1. The mechanical properties of wood were affected by variations of the deflection rates. The modulus of elasticity (MOE), modulus of rupture (MOR) and stress at proportional limit were in proportion to the logarithm of deflection rates. 2. The deflection of wood at rupture in bending increased as deflection rates decreased. 3. The variations of the microscopic deformations of sample specimens were closely related to the deflection of wood at rupture. In case of largely deflected wood by maximum bending load, severe and abundant microscopic deformations were observed.

Bending Characteristics of Single Crystalline Copper Nanowires (단결정 구리 나노와이어의 굽힘 특성)

  • Jung, Kwang-Sub;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1896-1901
    • /
    • 2008
  • Single crystalline copper nanowires are subjected to bending tests using molecular dynamics simulations and the embedded atom method. To observe behaviors of nanowire, bending tests are performed for various rates of deflection and different boundary conditions: fixed-free and fixed-fixed. When the deflection of nanowire becomes large, twinnings and dislocations appear, and <100> crystal structure transforms to <110>. At high rates, phase transformation occurs in whole nanowire. But, at low rates, atomic structure changes to <110> phase partially. The final deformed structures are affected by the rate of deflection and boundary conditions. These effects can be important design parameters at nanoscale.

  • PDF

Rear-Projection CRT Deflection Circuit System

  • Ho, Ming-Tsung;Mo, Chi-Neng;Lin, Chia-Jin;Liu, Chia-Lin;Juan, Chang-Jung;Tsai, Ming-Jong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.732-736
    • /
    • 2005
  • Discussion of this study is that a horizontal deflection system satisfactory of operating at horizontal scan rates from 30KHz to 50KHz has been developed. It will be used in the large-area, color, high-resolution and multi-sync rear-projection CRT display device. Its characters, including the description, analysis and deflection circuit loss, are presented.

  • PDF

Numerical Study on the Fire Damaged Reinforced Concrete Building Structures Considering Influencing Fire Case and Parameters of Columns (화재피해를 받은 철근콘크리트 건축물의 기둥의 영향인자를 고려한 해석적 연구)

  • Suh, Yeonwoo;Son, Hee Ju
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.101-112
    • /
    • 2022
  • Expanding urbanization practices result in high numbers of buildings being developed in city centers. This high building concentration leads to an increased fire risk, resulting in higher casualty rates and increased economic damages compared to fires in the past. The purpose of this study was to analyze the structural behavior of fire-damaged reinforced concrete buildings using analytical methods and to suggest methods of improving fire resistance in the event of a fire. Damage levels were measured using commercial software to apply the finite element method, ABAQUS, and MIDAS GEN to the dataset. Load-deflection curves were calculated using the effective area and moment of inertia of the fire-damaged columns provided by ABAQUS. The results of this analysis indicate that fire-damaged beams with experience greater deflection from indoor fires than they will from outdoor fires. Fires that occurred on the middle floors were more dangerous than those occurring on higher floors, and eccentrically loaded columns experienced more damage than axially loaded columns. The results indicate that these methods accurately predict structural behaviors of fire damaged concrete columns by considering fire exposure area and eccentric loading.

A Study on Dynamic Analysis of Nano Fountain Pen (나노 파운틴펜의 동적해석에 관한 연구)

  • Lee, Young-Kwan;Kim, Hun-Mo;Kim, Youn-Jae;Lee, Suk-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.922-929
    • /
    • 2006
  • In this study, flow characteristics of the FPN (Fountain Pen Nano-Lithography) using active membrane pumping are investigated. This FPN has integrated chamber, micro channel, and high capacity reservoir for continuous ink feed. The most important aspect in this probe provided control of fluid injection using active membrane pumping in chamber. The flow rates in channel by capillary force are theoretically analyzed, including the control of mass flow rates by deflection of membrane. The above results are compared with numerical simulations that calculated by commercial code, FLUENT. The velocity of fluid in micro channel shows linear behaviors. And the mass flows are proportional to the second order function of pumping pressure that is imposed to membrane.

  • PDF

Microstructurally Sensitive Fatigue Crack Propagation Behavior (微視組織에 敏感한 疲勞균열進展擧動)

  • 김정규;황돈영;박영조
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.316-325
    • /
    • 1986
  • Characteristics of fatigue crack propagation in martensite-ferrite duel phase steels have been investigated. In low .DELTA.K region, fatigue crack propagation resistance increases with increasing volume fraction of martensite, but the difference of crack propagation resistance resulted from the volume fraction decreases with increasing .DELTA.K. Also, threshold stress intensity factor range .DELTA.K$_{th}$ increases with increasing volume fraction of martensite, But fatigue crack propagation rates of dual-phase steels in terms of .DELTA.K$_{eff}$ are independent to volume fraction of martensite. These phenomena can be explained by the roughness induced crack closure due to crack deflection.n.n.

Facture Prediction in SiC Fiber Reinforced $Si_3N_4$ Matrix Composites from Electrical Resistivity Measurements (전기저항측정에 의한 SiC섬유강화 $Si_3N_4$기 복합재료의 파괴예측)

  • Sin, Sun-Gi
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.364-368
    • /
    • 2000
  • SiC fiber reinforced $Si_3N_4$ matrix composites combined with electrical conductive phases of carbon fiber and WC powder fabricated by hot pressing at 1773K. The ability to predict fracture in the ceramic matrix composites was evaluated by measuring simultaneous load-deflection and electrical resistanc difference-deflection curves in four point bending tests. The changes in electrical resistance differences closely corresponded to the fracture behavior of the composites. Different electrical conductive phases are suited to predicting different stages and rates of fracture. These obsevations how that it is possible to perform "in situ" fracture detection in ceramic composites.

  • PDF

Study on the evaporation of high melting temperature metal by using the manufactured electron hem gun system (전자총 시스템 제작과 이를 이용한 고융점 금속 증발에 관한 연구)

  • 정의창;노시표;김철중
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • An axial electron beam gun system, which emits the electron beam power of 50 kW, has been manufactured. The electron beam gun consists of two parts. One is the electron beam generation part. including the filament, cathode, and anode. The maximum beam current is 2 A and the acceleration voltage is 25 kV. The other part includes the focusing-, deflection-, and scanning coils. The beam diameter and ham trajectory can be controlled by these coils. The characteristic of each part is measured ior the optimum condition of evaporation process. Moreover, Helmholtz coil is installed inside the vacuum chamber to adjust the incident angel of the beam to the melting surface for the maximum evaporation. We report on the evaporation rates for zirconium(Zr) and gadolinium(Gd) metals which have the high melting temperatures.

Complications of the retromandibular transparotid approach for low condylar neck and subcondylar fractures: a retrospective study

  • Hevele, Jeroen Van;Nout, Erik
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.44 no.2
    • /
    • pp.73-78
    • /
    • 2018
  • Objectives: The goal of this study was to evaluate the rates of complications, morbidity, and safety with the transparotid approach. Materials and Methods: A retrospective study was conducted and consisted of 53 surgically treated patients in the past five years for low condylar neck and subcondylar fractures. Only patients with malocclusion and who underwent open reduction with internal fixation with the retromandibular transparotid approach were included. The examined parameters were postoperative suboptimal occlusion, deflection, saliva fistula, and facial nerve weakness. Results: Fifty-three patients had an open reduction with internal fixation on 55 sides (41 males, 77.4%; mean age, 42 years [range, 18-72 years]). Four patients (7.5%) experienced transient facial nerve weakness of the marginal mandibular branch, but none was permanent. Four patients had a salivary fistula, and 5 patients showed postoperative malocclusion, where one needed repeat surgery after one year. One patient showed long-term deflection. No other complications were observed. Conclusion: The retromandibular transparotid approach is a safe procedure for open reduction and internal fixation of low condylar neck and subcondylar fractures, and it has minimal complications.

Strain-rate effects on interaction between Mode I matrix crack and inclined elliptic inclusion under dynamic loadings

  • Li, Ying;Qiu, Wan-Chao;Ou, Zhuo-Cheng;Duan, Zhuo-Ping;Huang, Feng-Lei
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.801-814
    • /
    • 2012
  • The strain rate effects on the interaction between a Mode I matrix crack and an inclined elliptic matrix-inclusion interface under dynamic tensile loadings were investigated numerically, and the results are in agreement with previous experimental data. It is found, for a given material system, that there are the first and the second critical strain rates, by which three kinds of the subsequent crack growth patterns can be classified in turn with the increasing strain rate, namely, the crack deflection, the double crack mode and the perpendicular crack penetration. Moreover, such a crack deflection/penetration behavior is found to be dependent on the relative interfacial strength, the inclined angle and the inclusion size. In addition, it is shown that the so-called strain rate effect on the dynamic strength of granule composites can be induced directly from the structural dynamic response of materials, not be entirely an intrinsic material property.