• Title/Summary/Keyword: deflection limits

Search Result 50, Processing Time 0.024 seconds

Joint stress based deflection limits for transmission line towers

  • Gayathri, B.;Ramalingam, Raghavan
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.45-53
    • /
    • 2018
  • Experimental investigations have revealed significant mismatches between analytical estimates and experimentally measured deflections of transmission towers. These are attributed to bolt slip and joint flexibility. This study focuses on effects of joint flexibility on tower deflections and proposes criterions for permissible deflection limits based on the stresses in joints. The objective has been framed given that guidelines are not available in the codes of practices for transmission towers with regard to the permissible limits of deflection. The analysis procedure is geometric and material nonlinear with consideration of joint flexibility in the form of extension or contraction of the cover plates. The deflections due to bolt slip are included in the study by scaling up the deflections obtained from analysis by a factor. Using the results of the analysis, deflection limits for the towers are proposed by limiting the stresses in the joints. The obtained limits are then applied to a new full scale tower to demonstrate the application of the current study.

Review of design parameters for FRP-RC members detailed according to ACI 440.1R-06

  • Jnaid, Fares;Aboutaha, Riyad
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.105-121
    • /
    • 2013
  • This paper investigates the parameters that control the design of Fiber Reinforced Polymer (FRP) reinforced concrete flexural members proportioned following the ACI 440.1R-06. It investigates the critical parameters that control the flexural design, such as the deflection limits, crack limits, flexural capacity, concrete compressive strength, beam span and cross section, and bar diameter, at various Mean-Ambient Temperatures (MAT). The results of this research suggest that the deflection and cracking requirements are the two most controlling limits for FRP reinforced concrete flexural members.

Serviceability design of a cold-formed steel portal frame having semi-rigid joints

  • Lim, J.B.P.;Nethercot, D.A.
    • Steel and Composite Structures
    • /
    • v.3 no.6
    • /
    • pp.451-474
    • /
    • 2003
  • Details are given of a cold-formed steel portal framing system that uses simple bolted moment-connections for both the eaves and apex joints. However, such joints function as semi-rigid and, as a result, the design of the proposed system will be dominated by serviceability requirements. While serviceability is a mandatory design requirement, actual deflection limits for portal frames are not prescribed in many of the national standards. In this paper, a review of the design constraints that have an effect on deflection limits is discussed, and rational values appropriate for use with cold-formed steel portal frames are recommended. Adopting these deflection limits, it is shown through a design example how a cold-formed steel portal frame having semi-rigid eaves and apex joints can be a feasible alternative to rigid-jointed frames in appropriate circumstances.

Deflection Limits based on the Vibration Serviceability of Guideway Structures Considering Maglev Train-Guideway Interaction (자기부상열차와 가이드웨이 상호작용을 고려한 가이드웨이 구조물의 진동사용성 처짐 한계)

  • Lee, Jin Ho;Kim, Sung Il
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.111-119
    • /
    • 2017
  • In this study, deflection limits based on the vibration serviceability of guideway structures are proposed considering maglev train-guideway interaction. Equations of motion are derived for a simplified maglev railway. Feedback constants for the control of the electromagnetic force for levitation are optimized in order to minimize the airgap fluctuations. Deflection limits for a guideway are calculated for various operating speeds of a maglev train, span lengths of a guideway, and natural frequencies and damping ratios of the second suspension in order to satisfy the serviceability criteria for airgaps and for the vertical acceleration of a cabin. From the analysis results, proposed are requirements for the second suspension of maglev trains and deflection limits for guideway structures.

Investigation of Live Load Deflection Limit for Steel Cable Stayed and Suspension Bridges

  • Park, Ki-Jung;Kim, Do-Young;Hwang, Eui-Seung
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1252-1264
    • /
    • 2018
  • Long span bridges such as steel cable stayed and suspension bridges are usually more flexible than short to medium span bridges and expected to have large deformations. Deflections due to live load for long span bridges are important since it controls the overall heights of the bridge for securing the clearance under the bridge and serviceability for securing the comfort of passengers or pedestrians. In case of sea-crossing bridges, the clearance of bridges is determined considering the height of the ship master from the surface of the water, the trim of the ship, the psychological free space, the tide height, and live load deflection. In the design of bridges, live load deflection is limited to a certain value to minimize the vibrations. However, there are not much studies that consider the live load deflection and its effects for long span bridges. The purpose of this study is to investigate the suitability of live load deflection limit and its actual effects on serviceability of bridges for steel cable-stayed and suspension bridges. Analytical study is performed to calculate the natural frequencies and deflections by design live load. Results are compared with various design limits and related studies by Barker et al. (2011) and Saadeghvaziri et al. (2012). Two long span bridges are selected for the case study, Yi Sun-Sin grand bridge (suspension bridge, main span length = 1545 m) and Young-Hung grand bridge (cable stayed bridge, main span length = 240 m). Long-term measured deflection data by GNSS system are collected from Yi Sun-Sin grand bridge and compared with the theoretical values. Probability of exceedance against various deflection limits are calculated from probability distribution of 10-min maximum deflection. The results of the study on the limitation of live load deflection are expected to be useful reference for the design, the proper planning and deflection review of the long span bridges around the world.

Tool Deflection Estimation in Micro Flat End-milling Using Finite Element Method (유한요소법을 이용한 마이크로 평엔드밀링에서의 공구변형 예측)

  • Lim, Jeong-Su;Cho, Hee-Ju;Seo, Tae-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.498-503
    • /
    • 2010
  • The main purpose of this study strongly concerned micro machining error estimation by using FEM analysis of tool deflection shapes in micro flat end-milling process. For the precision micro flat end-milling process, analysis of micro cutting errors is mandatory. In general, tool deflection is a major factor which causes cutting error and limits realization of the high-precision cutting process. Especially, in micro end-milling process, micro tool deflection generates very serious problems in contrast to macro tool deflection. Methods which deal with compensation of cutting error by tool deflection in macro end-milling process have been studied plentifully but, few researches transact with micro scaled cutting tool deflection in micro cutting process. Therefore, the trend of micro tool deflection was estimated by using FEM analysis in this paper. Cutting forces were acquired by micro dynamometer and these were utilized in FEM analysis. In order to verify FEM analysis results, micro machining processes were carried out and real machined profiles were compared with FEM results. Finally through the proposed approach well suited FEM results were obtained.

Deflection Limit on Vibration Serviceability of High-speed Railway Bridges Considering the Exposed Time Duration (진동지속시간을 고려한 고속철도교량의 진동 사용성 처짐 한계)

  • Jeon, Bub-Gyu;Kim, Nam-Sik;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1444-1451
    • /
    • 2010
  • This paper aims for proposed the deflection limit on vibration serviceability of high-speed railway bridges considering the exposed time duration when a train passes a railway bridge. For this purpose, bridge-train transfer function was derived and bridge-train interaction analysis was performed by using the derived function. The vertical acceleration signals of passenger cars obtained from bridge-train interaction analysis were compared with them from the bridge-train transfer function by moving constant force analysis. Therefore it was estimated possible to induce the comfort deflection limit of railway bridge by using bridge-train transfer function. The deflections by moving force of single span bridge and continuous bridge were assumed as sine and haversine wave. The deflection limit on vibration serviceability of high-speed railway bridges considering the exposed time duration can be expanded using bridge-train transfer function and bridge comfort limit considering serviceability due to bridge vibration. And it was compared to other allowable deflection limits of railway bridge design specifications.

  • PDF

Developments in composite construction and cellular beams

  • Lawson, R.M.;Hicks, S.J.
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.193-202
    • /
    • 2005
  • This paper describes recent developments in composite construction and their effect on codified design procedures in the UK. Areas of particular interest include: rules on shear connection, design of beams with web openings, serviceability limits, such as floor vibrations, and fire safe design. The design of cellular beams with regular circular openings now includes generalized rules for web-post buckling, and for the development of in-plane moment in the web-post for asymmetric sections. Closed solutions for the maximum shear force due to limits on web-post bending or buckling are presented. The fire resistance of cellular beams is also dependent on the temperature of the web-post, and for closely spaced openings. It is necessary to increase the thickness of fire protection to the web. For serviceability design of beams, deflection limits and natural frequency and response factor for vibration are presented. It may be necessary to use stricter limits for certain applications.

Evaluation of Comfort Limit on High Speed Railway Bridge Vibration Considering Passenger's Comfort (승차감을 고려한 고속철도 교량 진동사용성 평가)

  • Chin, Won-Jong;Kwark, Jong-Won;Choi, Eun-Suk;Kang, Jae-Yoon;Kim, Sung-Tae;Yoon, Hye-Jin;Kim, Nam-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.829-835
    • /
    • 2011
  • This paper aims for proposed the deflection limit on vibration serviceability of high-speed railway bridges considering passenger's comfort when a train passes a railway bridge. The vertical acceleration signals of passenger cars obtained from test were compared with them from the bridge-train transfer function by riding KTX. The deflections by KTX of seven high speed railway bridges were assumed as sine and haversine wave. The deflection limit on vibration serviceability of high-speed railway bridges considering passenger's comfort when a train passes a railway bridge duration can be expanded using bridge-train transfer function and bridge comfort limit considering serviceability due to bridge vibration. And it was compared to other allowable deflection limits of railway bridge design specifications.

  • PDF

Bending Properties of Parallel Chord Truss with Steel-Web Members

  • Hyung Woo LEE;Sang Sik JANG
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.197-206
    • /
    • 2023
  • A truss is a structure in which the members are connected and arranged such that they are primarily subjected to axial loading. A truss has the advantage that it can be used for a longer span because the structure distributes the applied force to its members well, and the load is transmitted only in the axial direction of the members. Trusses manufactured using timber have more advantages than those made of other materials. In this study, the properties of parallel chord trusses composed of timber chord and steel-web members were evaluated. We constructed truss specimens with various lengths by using upper and lower chords of 2 × 4 inch spruce-pine-fir lumber and steel-web members manufactured by S and P companies. The specimens were tested in accordance with KS F 2150. The test results showed that the load at the deflection limit and the deflection limit itself increased from L/180 to L/360 regardless of the length of the specimens. For specimens of the same length, the load at the deflection limit increased as the height of the parallel timber chord truss specimens increased from 200 to 300 mm. Successive installations of the steel-web members (SST) showed almost 2 times the load at each deflection limit compared to that of SAT specimens (alternate installation of the steel-web members). When comparing the three load-deflection limits in terms of the manufacturer of the steel-web members, the load at each deflection limit for SST specimens was higher than that for PST specimens.