• Title/Summary/Keyword: deflection control

Search Result 409, Processing Time 0.038 seconds

A Study on the Improvement of Surface Waviness by Cutting Force Control (밀링머신의 절삭력 제어를 통한 표면굴곡도 향상에 관한 연구)

  • 오준호;정충영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.206-214
    • /
    • 1988
  • To improve the surface waviness in the peripheral milling, the feedrate is controlled so that the cutting force measured in the normal direction to the workpiece is constant. A discrete time first order model between the feedrate and the tool deflection is derived for the control. It has been shown by the analysis that the tool deflection is directly related to the feedrate and largely affects the surface waviness during cutting. The experimental results shown that the surface waviness is drastically improved by the proposed methods.

A Study on End-effector Friction of Constrained Spatial Flexible Manipulator (구속 받는 3차원 유연 매니퓰레이터 선단의 마찰에 관한 연구)

  • Kim, Jin-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.449-454
    • /
    • 2010
  • The force control of a constrained flexible manipulators has been one of the major research topics. However, a little effort has been devoted for the relation between friction force and elastic deflection of end-effector for a constrained flexible manipulator. So, the aim of this paper is to clarify the friction mechanism of a constrained spatial multi-link flexible manipulator by changing the material and connected method of end-effector. In this study, a concise hybrid position/force control scheme is applied to the control of a flexible manipulator, and the experimental results for the constrained vertical motion and constrained horizontal motion is presented. Finally a comparison between these results are presented to show the reduction of vibration of link and friction force.

Study on the Fluidic Thrust Vector Control Using Co-Flow Concept

  • Wu, Kexin;Jin, Yingzi;Kim, Heuy Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.675-678
    • /
    • 2017
  • In the present, various methods have been employed to obtain the lesser thrust loss. Numerical simulations have been carried out for optimizing the thrust vector control system. Thrust vector control based on coflowing shear layer is an effective method to control the primary jet direction in the absence of moving parts. Thrust vector in symmetric nozzles is acquired by secondary flow injections that result to boundary layer separation. The pressure in secondary flow inlet was varied to check the deflection angle of jet flow.

  • PDF

Active Vibration Suppression of a Flexible Structure Using Sliding Mode Control

  • Itik Mehmet;Salamci Metin U.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1149-1158
    • /
    • 2006
  • In this paper, sliding mode control (SMC) is designed and applied to an elastic structure to suppress some of its vibration modes. The system is an elastic beam clamped on one end and the designed controller uses only the deflection measurement of the free end. The infinite dimensional mathematical model of the beam is reduced to an ordinary differential equation set to represent the behavior of required modes. Since the states of the finite dimensional model are not physically measurable quantities, an observer is designed to estimate these states by measuring the tip deflection of the beam. The performance of the observer is important because the observed states are used in the SMC design. In this study, by using the output information, an observer is designed and tested to estimate the states of the finite dimensional model of the beam. Then the designed SMC is applied to the experimental beam system which gives satisfactory suppressed vibrations.

A Vibration Control of a Flexible Beam using a Nonlinear Compensator with Complex Dual-Input Describing Function (복소쌍입력 기술함수를 갖는 비선형 보상기를 이용한 유연한 빔의 진동제어)

  • 권세현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.227-235
    • /
    • 1999
  • In this paper a vibration control fo a one-link flexible beam is considered. At first a state-space model for a flexible beam is derived by using the assumed-modes approach. Based on this model the transfer function between the applied torque and the tip deflection fo the beam is presented because it is convenient to apply our method. In general there exist some control difference due to flexibility of the beam so we adop a forward-passive controller to reduce these phenomena. And a complex dual-input describing function compensator is used to control the tip deflection. The stabiltiy and the performance of the closed-loop system are analyzed. Finally the validity of the derived model and the effectiveness of proposed controller are confirmed throuth simula-tions and experiments.

  • PDF

A Study on Operation Characteristics of Co-flow Fluidic Thrust Vector Control under Over-expanded Jet Condition (동축류 이차유동 분사를 이용한 초음속 과팽창 제트유동의 유체역학적 추력방향제어 작동특성 연구)

  • Heo, Jun-Young;Jeon, Dong-Hyun;Lee, Yeol;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.416-423
    • /
    • 2011
  • The purpose of this research is to investigate the operation characteristics of fluidic thrust vector control using injection of the control flow parallel to the main jet direction; Co-flow injection. The technique bases on the Coanda effect of flow. Both numerical and experimental studies were conducted to investigate operation parameters; flow structure, the jet deflection angle, and shock effects near the nozzle exit. While the total pressure of main jet is the range of 300 to 790 kPa, the total pressure of control flow varies from 120 to 200 kPa. The jet deflection angle and thrust coefficient have linear relation with the pressure ratio(PR) of main jet to control flow in 0.15 < PR < 0.4 but show their limit above PR = 0.4.

Theoretical Evaluation of the Post Tensioning Effect in Continuous Slabs (연속 슬래브의 포스트 텐셔닝 보강에 대한 이론적 분석)

  • Kim, Chang-Hyuk;Kim, Kang-Su;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.105-116
    • /
    • 2009
  • Reinforced concrete (RC) structures have been most widely used because of their good economic efficiency. However, it is very weak in tensile stresses and difficult to control deflection due to the heavy self-weight of concrete. On the other hand, it is generally known that prestressed concrete structures can be the most effective to overcome the demerits of RC structures by using various tendon lay-out and its amount. In the prestressed concrete members, the inflection points of tendons should be placed effectively for the deflection control and the moment reduction. Therefore, in this study, the equations of tendon profiles are derived in terms of polynomials that satisfy essential conditions of tendon geometries such as inflection points and natural curved shapes of tendons placed in continuous members, from which vertical components of prestressing forces can be also calculated. The derived high order polynomial expression for the distributed shape of the upward and downward forces was transformed to an simplified equivalent uniform vertical force in order to improve the applicability in the calculation of member deflection. The influences of vertical forces by tendons to deflection and moment in a continuous slab were also considered depending on the distance from column face to the location of tendons. The applicability of the proposed method was examined by an example of deflection calculation for the cases of slabs with and without tendons, and the efficiency of deflection control by tendons was also quantitatively estimated.

Fuzzy -Logic Controller for Flexible-Link Manipulators (유연 링크 로봇의 제어)

  • 강재용;박종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.342-345
    • /
    • 1995
  • This paper describes the design process and the experimental results of a fuzzy logic controller to control the tip position of a fixible-link manipulator, directly driven by a AC motor, with a large payload. The joint angle fuzzy logic controller is designed without a costly nonlinear system analysis of the flexible manipulator and the AC motor drive system. The state variables for the fuzzy logic controller are joint angle, joint velocity, link deflection, and link deflection velocity. The simulation and experimental results show that the joint position control is not satisfactory when the controller is designed under the assumption of no link flexibility and that stable joint position control and link vibration suppression can be cahieved with the fuzzy logic controller suggested in this paper.

  • PDF

Applicability of Partial Post-Tension Method for Deflection Control of Reinforced Concrete Slabs (RC슬래브의 처짐제어를 위한 상향긴장식 부분PT공법의 적용)

  • Lee, Deuck-Hang;Kim, Kang-Su;Kim, Sang-Sik;Kim, Yong-Nam;Lim, Joo-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.347-358
    • /
    • 2009
  • Recently, it is getting into a good situation for the flat-plate slab system to be applied. The flat-plate slab without beam, however, is often too weak to control deflection properly compared to other typical slab-beam structures, for which the post-tension method is generally regarded as one of best solutions. The post-tension (PT) method can effectively control deflection without increase of slab thickness. Despite this good advantage, however, the application of PT method has been very limited due to cost increase, technical problems, and lack of experiences. Therefore, in order to reduce difficulties on applying full PT method under the current domestic circumstances and to enhance constructability of PT system, this research proposed the partial PT method with top jacking anchorage applied in a part of span as need. For the top jacking anchorage system, the efficiency of deflection control shall be considered in detail because it can vary widely depending on the location of anchorage that can be placed anywhere as need, and tensile stresses induced at back of the anchorage zone also shall be examined. Therefore, in this study, analysis were performed on the efficiency of deflection control depending on the location of anchorage and on tensile stresses or forces using finite element method and strut and tie model in the proposed top jacking anchorage system. The proposed jacking system were also applied to the floor slabs at a construction site to investigate its applicability and the analysis results of slab behavior were compared to the measured values obtained from the PT slab constructed by the partial PT method. The result of this study indicates that the partial PT method can be very efficiently applied with little cost increase to control deflection and tensile stresses in the region as a need basis where problem exists.

Span-to-Depth Ratio Equation for Reinforced Concrete Floor Members (콘크리트 바닥부재 설계를 위한 최소두께 산정식 제안)

  • Lee, Young-Hak;Chung, Kwang-Ryang;Choi, Bong-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.205-208
    • /
    • 2005
  • A single span-to-depth ratio function is proposed for control of deflection in one-way concrete construction. The equation can be applied to one-way slabs, beams, and flat plates. Effects of cracking, time-dependent deformation, boundary conditions, applied loading, and target deflection-to-span ratio are taken into account.

  • PDF