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Active Vibration Suppression of a Flexible Structure
Using Sliding Mode Control
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In this paper, sliding mode control (SMC) is designed and applied to an elastic structure to
suppress some of its vibration modes. The system is an elastic beam clamped on one end and

the designed controller uses only the deflection measurement of the free end. The infinite
dimensional mathematical model of the beam is reduced to an ordinary differential equation set
to represent the behavior of required modes. Since the states of the finite dimensional model are
not physically measurable quantities, an observer is designed to estimate these states by mea-
suring the tip deflection of the beam. The performance of the observer is important because the
observed states are used in the SMC design. In this study, by using the output information, an
observer is designed and tested to estimate the states of the finite dimensional model of the beam.
Then the designed SMC is applied to the experimental beam system which gives satisfactory

suppressed vibrations.
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1. Introduction

Sliding Mode Control (SMC) for Linear Time
Invariant (LTI) systems is well-defined and stu-
died in details by many researchers (Dorling and
Zinober, 1986 ; Spurgeon and Edwards, 1998 ;
Utkin, 1992 ; Utkin and Yang, 1978 ; Young, 1993 ;
Zinober, 1990). In general, SMC design proce-
dure for LTI systems can be divided into two
stages ; sliding surface design where the system is
restricted to remain on a linear hyper-plane in the
state space and control synthesis which will drive
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the system to the designed surface. Sliding surface
design for an LTI system is generally based on a
linear coordinate transformation which splits the
LTI system into two subsystems; one of which
has control input and the other remains without
control. While the subsystem with control input
is controlled, the overall system is derived to the
designed linear sliding surface. Once the system
reaches to the sliding surface, its behavior is char-
acterized by the hyper-plane. The parameters
(slopes) of the sliding surface are determined so
that the subsystem without control exhibits stable
behavior.

SMC design for nonlinear systems is also stu-
died by various mathematicians and engineers
(Banks et al., 1999 ; DeCarlo et al., 1988 ; Utkin,
1992) . Nevertheless there is no systematic method
to be generalized to all types of nonlinear systems.
This is because ; it is not an easy job to find a
coordinate transformation (either linear or non-
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linear) which will split the nonlinear system into
two subsystems like the one in LTI systems. Even
though there exists such a coordinate system, there
are many difficulties in finding the surface para-
meters resulting in stability for the subsystem
having no control input. Although there are some
suggested methods, sliding surface design for non-
linear systems is still an active research area
(Salamci, 1999 ; Salamci et al., 2000).

SMC is applied to many physical system models
including force and position control of robots, in-
duction motor control, satellites and flexible struc-
tures (Choi and Kim, 2003 ; Young, 1993 ; Zinober,
1990). However there are still few reported ex-
perimental results in the literature. This is mainly
due to its high frequency nature which makes the
control signal production very difficult in the
implementation. However, by the representation
of high frequency actuators in the market, SMC
becomes feasible in many engineering applica-
tions. For instance, piezoceramic actuators are
now commonly used in the vibration control of
flexible structures.

Active vibration suppression of flexible struc-
tures is an important engineering application since
light structures are becoming main elements in the
engineering systems. Therefore various control stra-
tegies have been suggested and applied to differ-
ent flexible systems to suppress vibrations. Cavallo
et al.(1999), Itik et al.(2005) and Young and
Ozguner (1993) have applied SMC, LQG control
has been suggested by Jeon et al.(2002) and by
Petersen and Pota (2003), QFT Control has been
applied by Choi et al.(1999), and H. control is
studied by Dosch et al.(1995), Itik et al.(2005),
Zames (1981) and Zames and Francis (1983). In
these studies, infinite dimensional flexible struc-
tures are, in generally, modeled as finite dimen-
sional linear systems by taking some of the vibra-
tion modes into consideration by means of the
assumed mode method and Finite Element Model.

In this paper, we shall design and apply SMC
to a clamped-free flexible beam in order to sup-
press the first two vibration modes. The partial
differential equation (PDE) of the beam obtained
from Euler-Bernoulli beam equation is transform-
ed to finite dimensional ordinary differential equa-
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tions (ODEs) by using the assumed mode meth-
od. As the SMC uses states of the system, which
are not measurable, an observer is designed to
estimate the states variables by measuring the tip
point displacement of the beam by means of a
laser displacement sensor. Since the control algo-
rithm is based on state variables, the states of the
system should be estimated in a short time which
makes the observer design critical. The designed
control algorithm is then applied to an experi-
mental flexible beam system.

The organization of the paper is as follows ; in
Section 2, the system modeling is described. Sec-
tion 3 gives the controller and observer design.
In section 4, simulation and experimental results
are given. Finally, conclusions are given in Sec-
tion 5.

2. The Beam Model

The flexible structure studied here is shown in
Fig. 1. As shown, the elastic beam is clamped in
one end and free on the other. Two piezoceramic
patches (PZT-Lead-Zirconate-Titanate) are bond-
ed to the flexible beam as actuators near the fixed
end and a laser displacement sensor is used to
measure tip point displacement.

The parameters of the flexible beam and PZT
patches are given in Table 1. Compared to the
beam length, L (0.507 m), PZT length (L—4=
0.05m) is very small and similarly PZT thick-
ness, f» (6.1 X107*m) is small compared to beam
thickness, £ (0.002 m). Therefore effect of elas-
ticity due to PZT element in the system may be
neglected in the derivation of mathematical ex-
pression of the model.
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Fig. 1 Flexible beam model
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Table 1 Parameters of flexible beam

Beam length, L 0.507 m
Beam width, b 0.051 m
Beam thickness, 7, 0.002 m
Beam density, o 2480 kg/m?
Beam Young’s modulus, E 70X 10° N/m?
PZT position, /, 0.026 m
PZT position, £ 0.076 m
Charge constant, du —200X107¥ m/V
PZT Young’s modulus, E 60X 10° N/m?®
PZT width, w 0.051 m
PZT thickness, # 6.1X107*m

Having considered uniform elastic beam struc-
ture, (i.e., density, cross-sectional area, moment
of inertia and Young’s module do not change
much along the beam length), by using the well-
known Euler-Bernoulli beam equation, the sys-
tem can be described by the following PDE ;

2 N Fylx, t
e e
o PValnt) o
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where y(x, ) is the deflection along the x-axis,
E is the Young’s modulus, [ is the moment of
inertia, A is the cross-sectional area, and p is
the density of the uniform beam. V,(x,¢) is the
applied control voltage to piezoceramic actuators.
Since piezoceramic actuators are uniform along
their lengths, the control voltage Va(x,?) can be
replaced by V,(¢). The constant C, is given by
the following equation ;

Co=FEpdad (l‘b + l‘p) (2>

where Ep is the Young’s modulus, # the thick-
ness, and djy the electric charge constant of pie-
zoceramic patches. b and #, are the width and
thickness of the beam respectively.
Euler-Bernoulli beam model is a distributed
parameter model which is governed by PDE’s
having infinite number of dimensions. This makes
it difficult to design and implement SMC algo-
rithm. In order to simplify the design of SMC,
Euler-Bernoulli beam equation is truncated to
finite number of series by using assumed modes
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approach. By this approach, the deflection of the
beam is given as functions of modal coordinates
and mode shape functions as depicted in Eq. (3a).
Then the following ODE'’s can be obtained.

() =5 a:() $u(x) (3a)
G:(t) +2E&aw:q:(8) +wiq:(2)
= Ca roiy_u
_'pALS |,¢z(ll) ¢z(lz)]Va(t) (3b)
for i=1, +--,

where g:(#), $:(x), ¢i(x), w:, & are the i-th
modal co-ordinate, mode shape function, modal
slope of the beam, natural frequency, and damp-
ing ratio respectively. In this study, the SMC is
designed to suppress the first two vibration modes
of the beam (7=1, 2). The mode shape function
for clamped-free beam is given by

@:(x) =L (cosh(Ax) —cos (Ax))

Ch(sinh () —sin(Ax)) P
where the constant k&; is given by ;
b cosh(A:L) +cos(A:L) (5)

7 sinh (AL) +sin{A:L)

The quantities A; are the real roots of cos (A:L)
cos(AL) =—1. For the first two modes of the
beam, the quantities are calculated as A;=3.7955
and A=9.5020. The natural frequencies can be
computed from

= [ EL »

where I=50t8/12, A=>bt,. The natural frequencies
are calculated as w,=6.5720 and w.=41.1890 Hz.
Damping ratios of the first two modes of the
flexible beam are obtained as £;=0.07 and &=
0.02 (Petersen and Pota, 2003). By using the
calculated values for the flexible beam, the fre-
quency response of the unforced system for the
first two modes is plotted in Fig. 2.

The second order ODE set given by Eq. (3b)
can be described in the state space form. For the
first two modes (i.e., =1, 2), the beam model
given in Eq. (3b) is written as follows ;
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Fig. 2 Frequency response of the elastic beam
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where x (#) =[q1 ¢1 g2 §2]7. Note that the state
variables are the modal coordinates and their first
derivatives which are not measurable.

3. SMC Design

SMC design procedure is generally divided into
two stages ; (1) design of sliding surface on which
the system will have stable motion and (2) syn-
thesis of the control algorithm such that the tra-
jectories of the closed loop motion are directed to
the designed sliding surface. In both stages, the
system states are necessary to complete the imple-
mentation. Since the states of the flexible beam
system can not be measured directly, in this study
an observer is designed to obtain the system states
by measuring the tip point displacement of the
beam. These design stages are summarized below
for the sake of completeness.

3.1 Sliding surface and controller design
SMC design procedure for general LTI systems
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is well defined (see Utkin, (1992) and the re-
ferences therein) and is summarized here. For an
LTI system represented by

%(t)=Ax(t) +Bu(t)

y(8)=Cx ()
where xER", uER™, yER?, ASR™ and BER™".

The pair (A, B, C) is to be fully controllable
and observable. Sliding surface for the system

(8)

given by Eq. (8) is now;
olx,t)=Sx(¢) (9)

where SE R™ " is the sliding surface matrix and
it represents the slope of the sliding surface. This
matrix is selected in order to satisfy a stable mo-
tion for the closed loop system. To simplify the
selection of sliding surface slope, the system given
by Eq. (8) is defined in another coordinate sys-
tem by using a linear transformation z= T%. The
transformation matrix 7& R™" is selected so that
B=T"'B=[[0] : [B;]]7 which splits the sys-
tem into two subsystems; one without control
(1€ R™™) and the other with control (zER™).
In the new coordinate system, the system matrix
becomes ;

A B o

~= -1 =!
A=T"AT ,:Am Axn

Similarly, the system in the new coordinate system
can be represented as follows ;

21(t) =Ana(t) +A1222(l‘)
2(t) =Ana(t) + Anz(t) + Bau

where 21€ R™™ ", & R™. The sliding surface, on
the other hand, can be written in the new coor-
dinates as

0(z,t)=2z(t) +Sia(t) (12)

where S;E R=m*n=m anq satisfies S=|[I] :
| S/ |=ST". On the sliding surface o(z, #) =0,
which implies z(#) =—S8:21(#). This equation
is like a state feedback control for the zER" ™™
subsystem. In order to obtain a stable sliding sur-
face, the z1& R"™™ subsystem must have stable
dynamics. Therefore S, are chosen so that the
eigenvalues of (A —A1S1) matrix have nega-
tive real parts.



Active Vibration Suppression of a Flexible Structure Using Sliding Mode Control 1153

For the controller design stage, the control
input is designed such that the system trajectories
reach the sliding surface (reaching phase) and
then are stayed (sliding phase) on the sliding sur-
face. This is guaranteed by satisfying the follow-
ing inequality (note that the same condition can
be expressed by different equations);

6(x, 1) >0 if olx,¢) <0

(13)
6(x, 1) <0 if o(x,t) >0

The control law is selected in order to satisfy Eq.
(13) and it is given by ;

u(t) =tteq () +un(t) (14)

where tteq(t) =—(SB)'SAz(¢) and ua(t)=
— Ksign(o). The constant K is a positive num-
ber and determines the reaching time to the slid-
ing surface.

3.2 Observer design

As the modal co-ordinate and modal velocity
can not be measured directly, an observer is de-
signed in this work to estimate the system states.
The observer is a Luenberger observer for linear
systems given by ;

£(t)=Az(t)+Bu(t)+L(y—Cz(¢)) (15)

where £€ R” dimensional estimated states. Note
that the system should be observable to estimate
the states. By defining e=x—2% as the error be-
tween real and estimated states, the error dy-
namics of the observed system can be written as
follows ;

e(ty=(A—=LC)e(t) (16)

Therefore observer gain matrix, L, is chosen such
that (A—LC) matrix has negative eigenvalues
which implies that error dynamics is stable and
the estimated states converges to the exact values.
However, stability of the error dynamics is not the
only criteria in the selection of the observer gain
matrix. The observer should be quick enough to
estimate the states as these states are used in the
SMC design.

4, Simulation and Experimental
Results

The designed SMC algorithm is first simulated
by using the model of the flexible beam. The
model includes the first two vibration modes of
the system. By using the numerical values of the
model, the system can be described by the fol-
lowing ODE’s.

%x=Ax+Bu (17a)
y=Cx (17b)
where

0 | 0 0
—1705,14 —0,578 0 0

A= 705, ,3781 ’
0 0 0 1

0 0 —66976,58 —3,623

B=[00.1400.52]" and C=[0,9879 0 —0,9879 0]

Since rank([B . AB: A*B . A*B])=4 and
rank([C : AC : A%C . A%C])=4, the system
model is controllable and observable. By using
the following non-singular coordinate transfor-
mation matrix, 2= Tx, the system is described by
Eq. (18).

10,524 —0,14
120521 —0,14
11,042 —0,28
4 1 2 —025
2=Az+Bu (18a)
y=Cz (18b)

where

3,1095 —1,6925 —0,7087 0,0244
A=10° 3,1104 —1,6890 —0,7109 0,0230
6,2211 —3,3770 —1,4225 0,0455 |’

0,0545 0,0348 —0,0099 0,0020
B=[000 117 and C=[—0,3293 0.7684 —0,2195 0]

As described in section 3, a Luenberger observer
is designed to estimate the state variables by
measuring the tip point deflection of the beam.
The observer gain is important in the estimation
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procedure and it should be selected not only to
satisfy stable observer dynamics but also to yield
quick estimation of the states. In order to show
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Fig. 3 Free response of the beam model for 0.04 m
initial tip deflection
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Fig. 5 Beam model and observer responses for L,
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the effect of observer gain matrix, L, two simu-
lation results are given in Fig. 4 and Fig. 5 for
different observer gain matrices. Fig. 3 shows the
free vibration response of the beam model for a
0.04 m initial tip deflection. In the simulations,
observers are designed in order to estimate the
tip point deflection of the beam. Fig. 4 gives the
observer performance for the gain matrix of
L,=10°[—0,956 —0,9559 —1,9118 0,0171]7. Fig.
5, on the other hand, plots the observer and
system responses for the gain matrix of L,=
10°[5,374 5,381 10, 758 0,105]".

Although two gain matrices give stable error
dynamics for the observer (both observers esti-
mate the states), the second gain matrix results in
very quick estimation of the state variables. As
seen in Fig. 5, the observer estimates the tip point
deflection of the beam accurately less than 0.1 sec
and the overshoots are negligible. This is very
important in the implementation of SMC because
the control law uses the estimated state variables,
Slow estimation of state variables results in high
control voltages and may cause system instability.

By using the estimated state variables, the slid-
ing surface and SMC can be designed as outlined
in section 3. The sliding surface is now ;

0(z) =z+[—0.5361 —2.0695 1.2935] 2

By this sliding surface, z1E R® subsystem will
have the following eigenvalues on the surface.

Ae=—5%1757; A=—20

The equivalent part of the SMC in Eq. (14) is
determined to be;

Ueq=1[254.9466 19.8558 —137.1589 —25.7987]z
And the total control is now ;
u(t)=ueq(t)+un(t) (19)

where % (t) =—0.5sign(0(2)). By applying con-
trol law given in Eq.(19), the control signal
history is obtained as given by Fig. 6. From Fig.
6, it is seen that the control signal is between
+200V. However the PZT patches work between
F150V. In order to see the effect of bounded con-
trol signal on the system performance, we have
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bounded the designed SMC between and applied
this control to the system model. The bounded
control signal is given in Fig. 7. Fig. 8 shows the

200 T T T T
180 b
100 J
&0 b

| 2

.5[] o
-100 i
-180 J

0y '

Cantrol Signal (V)

3 4 5

Time (s)

Fig. 6 Control voltage to PZT patches

o
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f=1

2 3 4 5
Time (s)
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003
0.02
8.0
0
0.01
0.0
£0.03
0.04
0.05

0

1

Fig. 7 Bounded control signal

¥ (m)

1 2 3 4 5
Time (s)

Fig. 8 Closed loop response of the beam model to
the bounded SMC

system response to the bounded SMC and sliding
surface variation is plotted in Fig. 9. Since the
required control voltages do not exceed limita-
tions much, the system responses to the bounded
SMC is satisfactory and the vibrations are sup-
pressed in a short time. As seen in Fig. 9, the
sliding surface is reached in less than 0.5 sec and
the system remains on the surface afterwards even
the bounded control input is applied.

After the simulation studies, we shall apply
SMC to an experimental beam system. The ex-
perimental setup used in this study is shown in
Fig. 10. Fig. 11 gives the schematic diagram of the
experimental setup of the flexible beam system. In
the experimental setup 507 X51 X2 mm aluminum
beam and 20X25X0.61 mm dimensional § pieces
BMS500 type piezoelectric (PZT, Lead-Zirconate-
Titanate) patches were used. The maximum work-
ing frequency of the PZT elements is 500 Hz

[ = N
T

Stiding Surface, o

A
L

Time {s)

Fig. 9 Sliding surface for bounded control

Fig. 10

The flexible beam system
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Fig. 11 Experimental setup of the flexible beam sys-
tem

which makes the designed SMC algorithm appli-
cable to the system.

In order to implement the controller designed
in section 3, Sensortech SS10 type four-channel
programmable controller and data acquisition sys-
tem was used. This programmable controller sys-
tem is controlled by a personal computer which
runs with Linux operating system. A program
was written in C programming language in order
to implement SMC algorithm to four-channel
programmable controller system. Then the con-
trol signal was send to Sensortech SA10 high
voltage power amplifier in order to apply to PZT
patches. The controller system can send signal
between —10V and + 10V, then this signal was
amplified 15 times by high voltage power ampli-
fier. Tip point displacement of the beam was mea-
sured by Keyence laser displacement sensor and
the measured signal was fed back to controller
system. The sampling frequency of the laser dis-
placement sensor is 1024 us.

The open loop time response of the beam for
0.04 m initial tip point displacement and zero ve-
locity is given in Fig. 12. The SMC was applied
to the beam and controlled time response of the
beam is given in Fig. 13 for the same initial con-
ditions. Applied control input to PZT patches is
given in Fig. 14.

From Fig. 13, it is seen that the applied SMC
can successfully suppress the vibrations in the
flexible beam system. Although the first two vi-
bration modes have been suppressed by the de-
signed SMC algorithm in this study, it is always
possible to extend the approach to the higher
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Fig. 14 Applied control voltage to PZT patches

vibration modes.
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5. Conclusions

In this work, SMC has been designed and ap-
plied to a flexible beam system to suppress the
first two vibration modes. In the SMC design,
only output information was used and the state
variables, which are necessary to construct SMC,
were estimated by using a Luenberger observer.
The observer gain matrix was selected such that
both the stability of observer and fast estimation
of the states were guaranteed. From the experi-
mental results, it is seen that the designed con-
troller exhibits satisfactory performance and sup-
presses the vibration of the beam. The approach
can be extended to the suppression of higher
vibration modes. In that case, higher dimensional
system models should be used.
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