• Title/Summary/Keyword: deflection control

Search Result 410, Processing Time 0.032 seconds

Transverse dynamics of slender piezoelectric bimorphs with resistive-inductive electrodes

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.355-374
    • /
    • 2016
  • This paper presents and compares a one-dimensional (1D) bending theory for piezoelectric thin beam-type structures with resistive-inductive electrodes to ANSYS$^{(R)}$ three-dimensional (3D) finite element (FE) analysis. In particular, the lateral deflections and vibrations of slender piezoelectric beams are considered. The peculiarity of the piezoelectric beam model is the modeling of electrodes in such a manner that is does not fulfill the equipotential area condition. The case of ideal, perfectly conductive electrodes is a special case of our 1D model. Two-coupled partial differential equations are obtained for the lateral deflection and for the voltage distribution along the electrodes: the first one is an extended Bernoulli-Euler beam equation (second-order in time, forth order in space) and the second one the so-called Telegrapher's equation (second-order in time and space). Analytical results of our theory are validated by 3D electromechanically coupled FE simulations with ANSYS$^{(R)}$. A clamped-hinged beam is considered with various types of electrodes for the piezoelectric layers, which can be either resistive and/or inductive. A natural frequency analysis as well as quasi-static and dynamic simulations are performed. A good agreement between the extended beam theory and the FE results is found. Finally, the practical relevance of this type of electrodes is shown. It is found that the damping capability of properly tuned resistive or resistive-inductive electrodes exceeds the damping performance of beams, where the electrodes are simply linked to an optimized impedance.

Effect of Mix Ingredients on Modulus of Elasticity of High-Strength Concrete (고강도 콘크리트의 탄성계수에 미치는 배합재료의 영향평가)

  • 장일영;박훈규;이승훈;김규동
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.67-75
    • /
    • 2002
  • For the design of concrete structures in the serviceability limit state, the uniaxial static modulus of elasticity may be a most important parameter. In particular, this may be so just for a deflection control of the structure. Even in new concrete codes, however, the elastic modulus is normally presented on the form of general empirical relationships with the compressive strength and density of concrete. Normally, there is a large uncertainty associated with the general equations obtained by regression. Thus, in a typical plot of static modulus of elasticity vs. compressive strength, a large scatter can be observed at same strength. The aim of this study is to present the method for obtain the maximum modulus of elasticity at same compressive strength. In the present paper report the effects of mix ingredients on the modulus of elasticity of high-strength concrete. The test of 284 cylinder specimens arc conducted for type I with 11 % replacement of fly-ash cement concretes. Different water-hinder ratio, amounts of water and coarse aggregate as variables were investigated. And also analyzed it statistically by using SAS.

Flexural Strengthening Characteristic of Sleeper Member Traditional Wooden Architecture (전통 목구조 멍에 부재의 휨 보강 특성)

  • Kim, Jeong-Sup;Cho, Cheol-Hee;Shin, Young-Seok;Cho, Youn-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • This study investigates experimentally flexural behavior and CFB(Carbon Fiber Bar) reinforcing effects of timber sleeper in traditional storied tower house. As a test result, standard sleepers without CFB(Carbon Fiber Bar) reinforcement show flexural cracks at the bottom member at the beginning of loading stage and leads to fracture. However, reinforced specimens with CFB show initial shrinkage at the upper part of specimen by compression, instead of flexural cracks at the bottom, and finally show compressive failure or fracture after failure of CFB and it proves that reinforcing effects by CFB are exerted from early loading. Reinforced specimens showed higher strength in yield strength by 6%~38%, and ultimate strength by 8%~17%, than those of standard specimens. Reinforced specimen is considered that specimen with flexural reinforcement using CFB can expect flexural deflection control effect. Reinforced specimen shows higher ductile coefficient increase of average 141% compared than standard specimens and it proves that higher structural ductile behavior can be expected in reinforced specimens.

Unified equivalent frame method for post-tensioned flat plate slab structures

  • Choi, Seung-Ho;Lee, Deuck Hang;Oh, Jae-Yuel;Kim, Kang Su;Lee, Jae-Yeon;Lee, Kang Seok
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.663-670
    • /
    • 2017
  • The post-tensioned (PT) flat plate slab system is commonly used in practice, and this simple and fast construction method is also considered to be a very efficient method because it can provide excellent deflection and crack control performance under a service load condition and consequently can be advantageous when applying to long-span structures. However, a detailed design guideline for evaluating the lateral behavior of the PT flat plate slab system is not available in current design codes. Thus, typical design methods used for conventional reinforced concrete (RC) flat plate slab structures have inevitably been adopted in practice for the lateral load design of PT flat plate structures. In the authors' previous studies, the unified equivalent frame method (UEFM) was proposed, which considers the combined effect of gravity and lateral loads for the lateral behavior analysis of RC flat plate slab structures. The aim of this study is to extend the concept of the UEFM to the lateral analysis of PT flat plate slab structures. In addition, the stiffness reduction factors of torsional members on interior and exterior equivalent frames were newly introduced considering the effect of post-tensioning. Test results of various PT flat plate slab-column connection specimens were collected from literature, and compared to the analysis results estimated by the extended UEFM.

Comparison of Blood Lead Concentration Using Graphite Furnace Atomic Absorption Spectrometry (GF-AAs) and Inductively Coupled Plasma-mass Spectrometry (ICP-MS) (흑연로 원자 흡광 광도법과 유도 결합 플라즈마 질량 분석법을 이용한 혈중 납 농도 비교)

  • Kang, Min-Kyung;Kwon, Jung-Yeon;Kim, Byoung-Gwon;Lim, Hyoun-Ju;Seo, Jeong-Wook;Kim, Yu-Mi;Hong, Young-Seoub
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.3
    • /
    • pp.258-266
    • /
    • 2019
  • Objectives: In this study, blood lead was analyzed using graphite furnace atomic absorption spectrometry (GF-AAs) and inductively coupled plasma mass spectrometry (ICP-MS). We tried to examine the difference and consistency of the analytical values and the applicability of the analytical method. Methods: We selected 57 people who agreed to participate in this study. After confirming the linearity of the calibration standard curves in GF-AAs and ICP-MS, the concentrations of lead in quality control material and samples were measured, and the degree of agreement was compared. Results: The detection limit of the ICP-MS was lower than that of GF-AAs. The coefficient of variation of reference materials was shown to be stable in the ICP-MS and GF-AAs. When the correspondence between the two equipments was verified by bias of the analysis values, a concordance was shown, and approximately 98% of the ideal reference lines were present within ${\pm}40%$ of the deflection. Conclusion: GF-AAs showed high sensitivity to single heavy metal analysis, but it took much time and showed higher detection limit than ICP-MS. Therefore, it would be considered necessary to switch to ICP-MS analysis method, considering that the level of lead exposure is gradually decreasing.

Potential side-NSM strengthening approach to enhance the flexural performance of RC beams: Experimental, numerical and analytical investigations

  • Md. Akter, Hosen; Mohd Zamin, Jumaat;A.B.M. Saiful, Islam;Khalid Ahmed, Al Kaaf;Mahaad Issa, Shammas;Ibrahim Y., Hakeem;Mohammad Momeen, Ul Islam
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.179-195
    • /
    • 2023
  • The performance of reinforced concrete (RC) beam specimens strengthened using a newly proposed Side Near Surface Mounted (S-NSM) technology was investigated experimentally in this work. In addition, analytical and nonlinear finite element (FE) modeling was exploited to forecast the performance of RC members reinforced with S-NSM utilizing steel bars. Five (one control and four strengthened) RC beams were evaluated for flexural performance under static loading conditions employing four-point bending loads. Experimental variables comprise different S-NSM reinforcement ratios. The constitutive models were applied for simulating the non-linear material characteristics of used concrete, major, and strengthening reinforcements. The failure load and mode, yield and ultimate strengths, deflection, strain, cracking behavior as well as ductility of the beams were evaluated and discussed. To cope with the flexural behavior of the tested beams, a 3D non-linear FE model was simulated. In parametric investigations, the influence of S-NSM reinforcement, the efficacy of the S-NSM procedure, and the structural response ductility are examined. The experimental, numerical, and analytical outcomes show good agreement. The results revealed a significant increase in yield and ultimate strengths as well as improved failure modes.

Experimental assessment on flexural behavior of demountable steel-UHPC composite slabs with a novel NPR steel plate

  • Jin-Ben Gu;Jun-Yan Wang;Yi Tao;Qing-Xuan Shi
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.381-392
    • /
    • 2023
  • This study experimentally investigates the flexural behavior of steel-UHPC composite slabs composed of an innovative negative Poisson's ratio (NPR) steel plate and Ultra High Performance Concrete (UHPC) slab connected via demountable high-strength bolt shear connectors. Eight demountable composite slab specimens were fabricated and tested under traditional four-point bending method. The effects of loading histories (positive and negative bending moment), types of steel plate (NPR steel plate and Q355 steel plate) and spacings of high-strength bolts (150 mm, 200 mm and 250 mm) on the flexural behavior of demountable composite slab, including failure mode, load-deflection curve, interface relative slip, crack width and sectional strain distribution, were evaluated. The results revealed that under positive bending moment, the failure mode of composite slabs employing NPR steel plate was distinct from that with Q355 steel plate, which exhibited that part of high-strength bolts was cut off, part of pre-embedded padded extension nuts was pulled out, and UHPC collapsed due to instantaneous instability and etc. Besides, under the same spacing of high-strength bolts, NPR steel plate availably delayed and restrained the relative slip between steel plate and UHPC plate, thus significantly enhanced the cooperative deformation capacity, flexural stiffness and load capacity for composite slabs further. While under negative bending moment, NPR steel plate effectively improved the flexural capacity and deformation characteristics of composite slabs, but it has no obvious effect on the initial flexural stiffness of composite slabs. Meanwhile, the excellent crack-width control ability for UHPC endowed composite members with better durability. Furthermore, according to the sectional strain distribution analysis, due to the negative Poisson's ratio effect and high yield strength of NPR steel plate, the tensile strain between NPR steel plate and UHPC layer held strain compatibility during the whole loading process, and the magnitude of upward movement for sectional plastic neutral axis could be ignored with the increase of positive bending moment.

Impact of openings on the structural performance of ferrocement I-Beams under flexural loads

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ayman M. Elshaboury;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.371-390
    • /
    • 2024
  • Investigating the impact of openings on the structural behavior of ferrocement I-beams with two distinct types of reinforcing metallic and non-metallic meshes is the primary goal of the current study. Up until failure, eight 250x200x2200 mm reinforced concrete I-beams were tested under flexural loadings. Depending on the kind of meshes used for reinforcement, the beams are split into two series. A control I-beam with no openings and three beams with one, two, and three openings, respectively, are found in each series. The two series are reinforced with three layers of welded steel meshes and two layers of tensar meshes, respectively, in order to maintain a constant reinforcement ratio. Structural parameters of investigated beams, including first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were reported. The number of mesh layers, the volume fraction of reinforcement, and the kind of reinforcing materials are the primary factors that vary. This article presents the outcomes of a study that examined the experimental and numerical performance of ferrocement reinforced concrete I-beams with and without openings reinforced with welded steel mesh and tensar mesh separately. Utilizing ANSYS-16.0 software, nonlinear finite element analysis (NLFEA) was applied to illustrate how composite RC I-beams with openings behaved. In addition, a parametric study is conducted to explore the variables that can most significantly impact the mechanical behavior of the proposed model, such as the number of openings. The FE simulations produced an acceptable degree of experimental value estimation, as demonstrated by the obtained experimental and numerical results. It is also noteworthy to demonstrate that the strength gained by specimens without openings reinforced with tensar meshes was, on average, 22% less than that of specimens reinforced with welded steel meshes. For specimens with openings, this value is become on average 10%.

Evaluation of Near Surface Mounted (NSM) FRP technique for strengthening of reinforced concrete slabs

  • Chunwei Zhang;M. Abedini
    • Advances in concrete construction
    • /
    • v.16 no.4
    • /
    • pp.205-216
    • /
    • 2023
  • Concrete structures may become vulnerable during their lifetime due to several reasons such as degradation of their material properties; design or construction errors; and environmental damage due to earthquake. These structures should be repaired or strengthened to ensure proper performance for the current service load demands. Several methods have been investigated and applied for the strengthening of reinforced concrete (RC) structures using various materials. Fiber reinforced polymer (FRP) reinforcement is one of the most recent type of material for the strengthening purpose of RC structures. The main objective of the present research is to identify the behavior of reinforced concrete slabs strengthened with FRP bars by using near surface mounted (NSM) technique. Validation study is conducted based on the experimental test available in the literature to investigate the accuracy of finite element models using LS-DYNA to present the behavior of the models. A parametric analysis is conducted on the effect of FRP bar diameters, number of grooves, groove intervals as well as width and height of the grooves on the flexural behavior of strengthened reinforced slabs. Performance of strengthening RC slabs with NSM FRP bars was confirmed by comparing the results of strengthening reinforced slabs with control slab. The numerical results of mid-span deflection and stress time histories were reported. According to the numerical analysis results, the model with three grooves, FRP bar diameter of 10 mm and grooves distances of 100 mm is the most ideal and desirable model in this research. The results demonstrated that strengthening of reinforced concrete slabs using FRP by NSM method will have a significant effect on the performance of the slabs.

A Study on the Development of Ability Women Specialist -Focused on the nursing specialist- (여성전문인의 능력발전에 관한 연구 - 전문간호사를 중심으로 -)

  • Kwon Ill Zoo
    • Journal of Korean Public Health Nursing
    • /
    • v.3 no.1
    • /
    • pp.101-119
    • /
    • 1989
  • In the present, since a five-year plan for economic development which was started in the early 60's has been successfully promoted for a quarter century, with consolidation in a department of social welfare in our country the participation. in economic society for women is more required than any other times. As a professional occupation for women is incereaing through a high-standard specialization, I think the upbringing for productive woman expert who has a strong motive of accomplishment as a developed person as well as a technical and skilful capacity which can be contributed to the growth of organization is very important. So in this study, I am evaluating the technical disposition of character of professional nurses working with hospital and also trying to supply the basic data being served to th extension of a skillful ability as a nurse, understanding the important factor related to it. The research method applied here is that we used 527 of formed questionnaires which were distributed to 7 University and General Hospitals, somewhat large in a scale, located in Seoul as an analytical material. It was performed between October 11, 1988 and October 18, 1988. An implement which was invented by Cho Moo-Sung is used after being amended and supplemented, which can measure the disposition of professional character. The formation of questionnaires of the disposition of character is 26 totally, 10 for Open-disposition, 11 for Active-disposition, 5 for wise-disposition, and it was measured. 'Ye', or 'No' through an one-half-standard and the environment of hospital organization is composed 12 questions from one point of 'Very Good' to 5 points of 'Very Bad.' Collected materials were analysed through an electronic calculation into the average value, the standard deflection, percentage, person correlative number, $X^2-test, m$ stepwise multiple regression. Summarizing the result from this research is as follows; 1. The average age of the subjective person of this investigation is 28.6 and the average career as a nurse is 6.0 years. 2. The Open-disposition that technical nurses showed is mostly half and half. 3. The Active-disposition of professional nurses was discovered affirmative largely and what they said in their questionnaires describes that they are very active answering $88.2\%$ for the disposition of self-control, $87.3\%$ for the people who think the training more seriously. 4. It was found out that the wise·disposition of technical nurse showed $90.7\%$ of 'Yes' about a new alternative of inquisitive question and we can see a progressive and profound aspect here. 5. As technical character of nurses, mutual relations between Active-disposition, Active-disposition, and wise­disposition were very profitably revealed as 0.42 in justice relations and also suggested that relations between Open-disposition, Active-disposition, and wise-disposition are 0.27 and 0.20 respectively. 6. What nurses recognize about the environment of hospital organization is reasonably acceptable while they feel very bad about rewards and punishments showing average 3.1 comparing to average 2.2 about time­control each other. Considering the prosperity of Active-disposition upon the result what I mentioned above, th possibility which is contributed to the productive improvement of hospital organization is very great and I think it can be more developed as a professional woman who has a strong motive of accomplishment, in advance.

  • PDF