DOI QR코드

DOI QR Code

Evaluation of Near Surface Mounted (NSM) FRP technique for strengthening of reinforced concrete slabs

  • Chunwei Zhang (Multidisciplinary Center for Infrastructure Engineering, Shenyang University of Technology) ;
  • M. Abedini (Multidisciplinary Center for Infrastructure Engineering, Shenyang University of Technology)
  • Received : 2022.11.18
  • Accepted : 2024.03.08
  • Published : 2023.10.25

Abstract

Concrete structures may become vulnerable during their lifetime due to several reasons such as degradation of their material properties; design or construction errors; and environmental damage due to earthquake. These structures should be repaired or strengthened to ensure proper performance for the current service load demands. Several methods have been investigated and applied for the strengthening of reinforced concrete (RC) structures using various materials. Fiber reinforced polymer (FRP) reinforcement is one of the most recent type of material for the strengthening purpose of RC structures. The main objective of the present research is to identify the behavior of reinforced concrete slabs strengthened with FRP bars by using near surface mounted (NSM) technique. Validation study is conducted based on the experimental test available in the literature to investigate the accuracy of finite element models using LS-DYNA to present the behavior of the models. A parametric analysis is conducted on the effect of FRP bar diameters, number of grooves, groove intervals as well as width and height of the grooves on the flexural behavior of strengthened reinforced slabs. Performance of strengthening RC slabs with NSM FRP bars was confirmed by comparing the results of strengthening reinforced slabs with control slab. The numerical results of mid-span deflection and stress time histories were reported. According to the numerical analysis results, the model with three grooves, FRP bar diameter of 10 mm and grooves distances of 100 mm is the most ideal and desirable model in this research. The results demonstrated that strengthening of reinforced concrete slabs using FRP by NSM method will have a significant effect on the performance of the slabs.

Keywords

Acknowledgement

This research is financially supported by the National Natural Science Foundation of China (Grant No. 52361135807), the Ministry of Science and Technology of China (Grant No. 2019YFE0112400), and the Department of Science and Technology of Shandong Province (Grant No. 2021CXGC011204).

References

  1. Abedini, M. and Zhang, C. (2021a), "Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive loading", Struct. Eng. Mech., Int. J., 77(4), 441-461. https://doi.org/10.12989/sem.2021.77.4.441
  2. Abedini, M. and Zhang, C. (2021b), "Performance assessment of concrete and steel material models in ls-dyna for enhanced numerical simulation, a state of the art review", Arch. Computat. Methods Eng., 28(4), 2921-2942. https://doi.org/10.1007/s11831-020-09483-5
  3. Abedini, M. and Zhang, C. (2022), "Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading", Steel Compos. Struct., Int. J., 45(3), 389-408. https://doi.org/10.12989/scs.2022.45.3.389
  4. Abedini, M. and Zhang, C. (2023), "Dynamic performance of ultra-high performance fiber-reinforced concrete panel exposed to explosive loading", Int. J. Protect. Struct., 20414196231212511. https://doi.org/10.1177/20414196231212511
  5. Ahmad, F.S., Foret, G. and Le Roy, R. (2011), "Bond between carbon fibre-reinforced polymer (CFRP) bars and ultra high performance fibre reinforced concrete (UHPFRC): Experimental study", Constr. Build. Mater., 25, 479-485. https://doi.org/10.1016/j.conbuildmat.2010.02.006
  6. Al-Saadi, N.T.K., Mohammed, A., Al-Mahaidi, R. and Sanjayan, J. (2019), "Performance of NSM FRP embedded in concrete under monotonic and fatigue loads: state-of-the-art review", Austral. J. Struct. Eng., 20(2), 89-114. https://doi.org/10.1080/13287982.2019.1605686
  7. Al-zu'bi, H., Abdel-Jaber, M.T. and Katkhuda, H. (2022), "Flexural strengthening of reinforced concrete beams with variable compressive strength using near-surface mounted carbon-fiber-reinforced polymer strips [NSM-CFRP]", Fibers, 10(10), 86. https://doi.org/10.3390/fib10100086
  8. Almassri, B., Al Mahmoud, F. and Francois, R. (2016), "Behaviour of corroded reinforced concrete beams repaired with NSM CFRP rods, experimental and finite element study", Compos. Part B: Eng., 92, 477-488. https://doi.org/10.1016/j.compositesb.2015.01.022
  9. Alvarez-Villarreal, A. (2004), "Temperature effect on bond properties of fiber Reinforced Polymer (FRP) bars embedded in concrete", Universite de Sherbrooke.
  10. Behzard, P., Sharbatdar, M.K. and Kheyroddin, A. (2016), "Different NSM FRP technique for strengthening of RC two-way slabs with low clear cover thickness", Scientia Iranica. Transact. A, Civil Eng., 23(2), 520. https://doi.org/10.24200/SCI.2016.2136
  11. Bui, L.V.H., Jongvivatsakul, P., Stitmannaithum, B. and Likitlersuang, S. (2022), "Numerical modelling of bond mechanism of ETS FRP bar‒concrete joints with long embedment length", Int. J. Adhes. Adhes., 117, 103179. https://doi.org/10.1016/j.ijadhadh.2022.103179
  12. Chan, S., Fawaz, Z., Behdinan, K. and Amid, R. (2007), "Ballistic limit prediction using a numerical model with progressive damage capability", Compos. Struct., 77(4), 466-474. https://doi.org/10.1016/j.compstruct.2005.08.022
  13. Effiong, J.U. and Ede, A.N. (2022), "Experimental investigation on the strengthening of reinforced concrete beams using externally bonded and near-surface mounted natural fibre reinforced polymer composites-a review", Materials, 15(17), 5848. https://doi.org/10.3390/ma15175848
  14. Fathuldeen, S.W. and Qissab, M.A. (2019), "Behavior of RC beams strengthened with NSM CFRP strips under flexural repeated loading", Struct. Eng. Mech., Int. J., 70(1), 67-80. https://doi.org/10.12989/sem.2019.70.1.067
  15. Firmo, J., Arruda, M., Correia, J. and Rosa, I. (2018), "Three-dimensional finite element modelling of the fire behaviour of insulated RC beams strengthened with EBR and NSM CFRP strips", Compos. Struct., 183, 124-136. https://doi.org/10.1016/j.compstruct.2017.01.082
  16. Godat, A., Aldaweela, S., Aljaberi, H., Al Tamimi, N. and Alghafri, E. (2021), "Bond strength of FRP bars in recycled-aggregate concrete", Constr. Build. Mater., 267, 120919. https://doi.org/10.1016/j.conbuildmat.2020.120919
  17. Hawileh, R.A. (2012), "Nonlinear finite element modeling of RC beams strengthened with NSM FRP rods", Constr. Build. Mater., 27(1), 461-471. https://doi.org/10.1016/j.conbuildmat.2011.07.018
  18. Ibrahim, M., Wakjira, T. and Ebead, U. (2020), "Shear strengthening of reinforced concrete deep beams using near-surface mounted hybrid carbon/glass fibre reinforced polymer strips", Eng. Struct., 210, 110412. https://doi.org/10.1016/j.engstruct.2020.110412
  19. Kocak, A. (2015), "Earthquake performance of FRP retrofitting of short columns around band-type windows", Struct. Eng. Mech., Int. J., 53(1), 1-16. https://doi.org/10.12989/sem.2015.53.1.001
  20. LS-DYNA (2007), "LS-DYNA Version 970 Keyword User's Manual", Livermore Software Technology Corporation.
  21. Mutalib, A., Tawil, N., Baharom, S. and Abedini, M. (2013), "Failure probabilities of FRP strengthened RC column to blast loads", Jurnal Teknologi, 65(2), 135-141.
  22. Noroozieh, E. and Mansouri, A. (2019), "Lateral strength and ductility of reinforced concrete columns strengthened with NSM FRP rebars and FRP jacket", Int. J. Adv. Struct. Eng., 11(2), 195-209. https://doi.org/10.1007/s40091-019-0225-5
  23. Omran, H.Y. and El-Hacha, R. (2012), "Nonlinear 3D finite element modeling of RC beams strengthened with prestressed NSM-CFRP strips", Constr. Build. Mater., 31, 74-85. https://doi.org/10.1016/j.conbuildmat.2011.12.054
  24. Panahi, M., Zareei, S.A. and Izadi, A. (2021), "Flexural strengthening of reinforced concrete beams through externally bonded FRP sheets and near surface mounted FRP bars", Case Stud. Constr. Mater., 15, e00601. https://doi.org/10.1016/j.cscm.2021.e00601
  25. Shafigh, A., Ahmadi, H.R. and Bayat, M. (2021), "Seismic investigation of cyclic pushover method for regular reinforced concrete bridge", Struct. Eng. Mech., Int. J., 78(1), 41-52. https://doi.org/10.12989/sem.2021.78.1.041
  26. Solyom, S. and Balazs, G.L. (2020), "Bond of FRP bars with different surface characteristics", Constr. Build. Mater., 264, 119839. https://doi.org/10.1016/j.conbuildmat.2020.119839
  27. Thakur, M.S., Pandhiani, S.M., Kashyap, V., Upadhya, A. and Sihag, P. (2021), "Predicting bond strength of FRP bars in concrete using soft computing techniques", Arab. J. Sci. Eng., 46(5), 4951-4969. https://doi.org/10.1007/s13369-020-05314-8
  28. Zhang, C. and Abedini, M. (2021), "Time-history blast response and failure mechanism of RC columns using Lagrangian formulation", Structures, 34, 3087-3098. https://doi.org/10.1016/j.istruc.2021.09.073
  29. Zhang, C. and Abedini, M. (2022a), "Application of Lagrangian approach to generate PI diagrams for RC columns exposed to extreme dynamic loading", Adv. Concrete Constr., Int. J., 14(3), 153-167. https://doi.org/10.12989/acc.2022.14.3.153
  30. Zhang, C. and Abedini, M. (2022b), "Development of PI model for FRP composite retrofitted RC columns subjected to high strain rate loads using LBE function", Eng. Struct., 252, 113580. https://doi.org/10.1016/j.engstruct.2021.113580
  31. Zhang, C. and Abedini, M. (2023), "Strain rate influences on concrete and steel material behavior, state-of-the-art review", Arch. Computat. Methods Eng., 30(7), 4271-4298. https://doi.org/10.1007/s11831-023-09937-6
  32. Zhang, C., Abedini, M. and Mehrmashhadi, J. (2020), "Development of pressure-impulse models and residual capacity assessment of RC columns using high fidelity Arbitrary Lagrangian-Eulerian simulation", Eng. Struct., 224, 111219. https://doi.org/10.1016/j.engstruct.2020.111219
  33. Zhang, S., Ke, Y., Smith, S., Zhu, H. and Wang, Z. (2021), "Effect of FRP U-jackets on the behaviour of RC beams strengthened in flexure with NSM CFRP strips", Compos. Struct., 256, 113095. https://doi.org/10.1016/j.compstruct.2020.113095