• Title/Summary/Keyword: defining equations

Search Result 50, Processing Time 0.028 seconds

Optimization of Vane Diffuser in a Mixed-Flow Pump for High Efficiency Design

  • Kim, Jin-Hyuk;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.172-178
    • /
    • 2011
  • This paper presents an optimization procedure for high-efficiency design of a mixed-flow pump. Optimization techniques based on a weighted-average surrogate model are used to optimize a vane diffuser of a mixed-flow pump. Validation of the numerical results is performed through experimental data for head, power and efficiency. Three-level full factorial design is used to generate nine design points within the design space. Three-dimensional Reynoldsaveraged Navier-Stokes equations with the shear stress transport turbulence model are discretized by using finite volume approximation and solved on hexahedral grids to evaluate the efficiency as the objective function. In order to reduce pressure loss in the vane diffuser, two variables defining the straight vane length ratio and the diffusion area ratio are selected as design variables in the present optimization. As the results of the design optimization, the efficiency at the design flow coefficient is improved by 7.05% and the off-design efficiencies are also improved in comparison with the reference design.

Surrogate Modeling for Optimization of a Centrifugal Compressor Impeller

  • Kim, Jin-Hyuk;Choi, Jae-Ho;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • This paper presents a procedure for the design optimization of a centrifugal compressor. The centrifugal compressor consists of a centrifugal impeller, vaneless diffuser and volute. And, optimization techniques based on the radial basis neural network method are used to optimize the impeller of a centrifugal compressor. The Latin-hypercube sampling of design-of-experiments is used to generate the thirty design points within design spaces. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model are discretized by using finite volume approximations and solved on hexahedral grids to evaluate the objective function of the total-to-total pressure ratio. Four variables defining the impeller hub and shroud contours are selected as design variables in this optimization. The results of optimization show that the total-to-total pressure ratio of the optimized shape at the design flow coefficient is enhanced by 2.46% and the total-to-total pressure ratios at the off-design points are also improved significantly by the design optimization.

Centrifugal Impeller Blade Shape Optimization Through Numerical Modeling

  • Bellary, Sayed Ahmed Imran;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.313-324
    • /
    • 2016
  • Surrogate model based shape optimization methodology to enhance performance of a centrifugal pump has been implemented in this work. Design variables, such as blade number and blade angles defining the pump impeller blade shape were selected and a three-level full factorial design approach was used for efficiency enhancement. A three-dimensional simulation using Reynolds-averaged Navier Stokes (RANS) equations for the performance analysis was carried out after designing the geometries of the impellers at the design points. Standard $k-{\varepsilon}$ turbulence model was used for steady incompressible flow simulations. The optimized impeller incurred lower losses by shifting the trailing edge towards the impeller pressure side. It is observed that the surrogates are problem dependent and most accurate surrogate does not deliver the best design always.

Numerical Prediction of Phase Change within the Molten Steel with Thin Slab Casting (박슬라브 주형에 따른 용강내의 상변화현상에 대한 수치적 해석)

  • 최원록;유홍선;최영기
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.14-22
    • /
    • 2000
  • A numerical analysis has been performed on the two-dimensional rectangular gallium melting problem using the enthalpy method. The major advantage of this method is that the physical domain is discretized with fixed grids without transforming variables and the interface conditions of phase change are accounted for the definition of suitable source terms in the governing equations. But in the fixed method, there is some ambiguity in defining the porosity constant which has no physical interpretation. If the velocity correction is included in the momentum equation, for the appropriate range of porosity constant, the realistic predictions are obtained. The object of the present work is to predict the phase change within the molten steel with thin riser slab using the modified enthalpy-porosity method. The computational procedures for predicting velocity and temperature are based on the finite volume method and the non-staggered grid system. The influence of natural convection on the melting process is considered. A comparison with the experimental results shows that the modified method is better than the previous one.

  • PDF

Size-dependent plastic buckling behavior of micro-beam structures by using conventional mechanism-based strain gradient plasticity

  • Darvishvand, Amer;Zajkani, Asghar
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.223-232
    • /
    • 2019
  • Since the actuators with small- scale structures may be exposed to external reciprocal actions lead to create undesirable loads causing instability, the buckling behaviors of them are interested to make reliable or accurate actions. Therefore, the purpose of this paper is to analyze plastic buckling behavior of the micro beam structures by adopting a Conventional Mechanism-based Strain Gradient plasticity (CMSG) theory. The effect of length scale on critical force is considered for three types of boundary conditions, i.e. the simply supported, cantilever and clamped - simply supported micro beams. For each case, the stability equations of the buckling are calculated to obtain related critical forces. The constitutive equation involves work hardening phenomenon through defining an index of multiple plastic hardening exponent. In addition, the Euler-Bernoulli hypothesis is used for kinematic of deflection. Corresponding to each length scale and index of the plastic work hardening, the critical forces are determined to compare them together.

TcellInflamedDetector: an R package to distinguish T cell inflamed tumor types from non-T cell inflamed tumor types

  • Yang, San-Duk;Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • v.20 no.1
    • /
    • pp.13.1-13.4
    • /
    • 2022
  • A major issue in the use of immune checkpoint inhibitors is their lack of efficacy in many patients. Previous studies have reported that the T cell inflamed signature can help predict the response to immunotherapy. Thus, many studies have investigated mechanisms of immunotherapy resistance by defining the tumor microenvironment based on T cell inflamed and non-T cell inflamed subsets. Although methods of calculating T cell inflamed subsets have been developed, valid screening tools for distinguishing T cell inflamed from non-T cell inflamed subsets using gene expression data are still needed, since general researchers who are unfamiliar with the details of the equations can experience difficulties using extant scoring formulas to conduct analyses. Thus, we introduce TcellInflamedDetector, an R package for distinguishing T cell inflamed from non-T cell inflamed samples using cancer gene expression data via bulk RNA sequencing.

A Study on Flow Zone Development and Bottom Change by Propeller Jets from Ships (선박추진기에 의한 흐름발달과 해저면변화에 대한 연구)

  • 이지훈;이중우
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.139-145
    • /
    • 2002
  • The flow zone through propeller jets are used in evaluating the environmental and constructional effects of navigation on the waterway. It relies on the characteristics of ships and water depth. A numerical model using the momentum theory of the propeller and Shield's diagram was developed in a restricted waterway. Equations for discharge are presented based on thrust coefficients and propeller speed and are the most accurate means of defining discharge. Approximate methods for discharge are developed based on applied ship's power. Equations for discharge are as a function of applied power, propeller diameter, and ship speed. Water depth of the waterway and draft of the shop are also necessary for the calculation of the grain size of the initial motion. The velocity distribution of discharge from the propeller was simulated by the Gaussian normal distribution function. The shear velocity and shear stress were from the Sternberg's formula. Case studies to show the influence of significant factors on sediment movement induced by the ship's propeller at the channel bottom are presented.

  • PDF

Modeling on Structural Control of a Laminated Composite Plate with Piezoelectric Sensor/Actuators (압전재료를 이용한 복합적층판의 구조제어에 관한 모델링)

  • 황우석;황운봉;한경섭;박현철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.90-100
    • /
    • 1993
  • A finite element formulation of vibration control of a laminated plate with piezoelectric sensor/ actuators is presented. Classical lamination theory with the induced strain actuation and Hamilton's principle are used to formulate the equations of motion of the system. The total charge developed on the sensor layer is calculated from the direct piezoelectric equation. The equations of motion and the total charge are discretized with 4 node, 12 degrees of freedom quadrilateral plate bending elements with one electrical degree of freedom. The mass and stiffness of the piezoelectric layer are introduced by treating them as another layer in laminated plate. Piezoelectric sensor/actuators are distributed, but discrete due to the geometry of electrodes. By defining an i.d. number of electrode for each element, modelling of electrodes with variable geometry can be achieved. The static response of a piezoelectric bimorph beam to electrical loading and sensor voltage to given displacement are calculated. For a laminated plate under the negative velocity feedback control, the direct time response by the Newmark-.betha. method and damped frequencies and modal damping ratios by modal state space analysis are derived.

Domain decomposition technique to simulate crack in nonlinear analysis of initially imperfect laminates

  • Ghannadpour, S. Amir M.;Karimi, Mona
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.603-619
    • /
    • 2018
  • In this research, an effective computational technique is carried out for nonlinear and post-buckling analyses of cracked imperfect composite plates. The laminated plates are assumed to be moderately thick so that the analysis can be carried out based on the first-order shear deformation theory. Geometric non-linearity is introduced in the way of von-Karman assumptions for the strain-displacement equations. The Ritz technique is applied using Legendre polynomials for the primary variable approximations. The crack is modeled by partitioning the entire domain of the plates into several sub-plates and therefore the plate decomposition technique is implemented in this research. The penalty technique is used for imposing the interface continuity between the sub-plates. Different out-of-plane essential boundary conditions such as clamp, simply support or free conditions will be assumed in this research by defining the relevant displacement functions. For in-plane boundary conditions, lateral expansions of the unloaded edges are completely free while the loaded edges are assumed to move straight but restricted to move laterally. With the formulation presented here, the plates can be subjected to biaxial compressive loads, therefore a sensitivity analysis is performed with respect to the applied load direction, along the parallel or perpendicular to the crack axis. The integrals of potential energy are numerically computed using Gauss-Lobatto quadrature formulas to get adequate accuracy. Then, the obtained non-linear system of equations is solved by the Newton-Raphson method. Finally, the results are presented to show the influence of crack length, various locations of crack, load direction, boundary conditions and different values of initial imperfection on nonlinear and post-buckling behavior of laminates.

Numerical Optimization for Performance Improvement of a Tunnel Ventilation Jet fan (터널 환기용 제트홴의 성능 향상을 위한 수치최적화)

  • Kim, Joon-Hyung;Kim, Jin-Hyuk;Kim, Kwang-Yong;Yoon, Joon-Yong;Choi, Young-Seok;Yang, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.63-68
    • /
    • 2011
  • This paper presents an optimization procedure for performance improvement of a tunnel ventilation jet fan. Optimization techniques based on response surface approximation (RSA) are employed to improve the aerodynamic performance of a tunnel ventilation jet fan. For numerical analysis, three-dimensional Renolds- averaged Navier-Stokes (RANS) equations with shear stress transport turbulence model are discretized by using finite volume approximations and solved on hexahedral grids to evaluate the total efficiency at the operating condition as the objective function. Four geometric variables defining the meridional length and the thickness profile at the hub and shroud in the jet fan rotor are selected as design variables for the numerical optimization. The results of the numerical optimization show that the total efficiency of the optimized model is significantly improved in comparison with the base model.