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Introduction 

Cancer cells express programmed death ligand 1 as a signal related to T cell unresponsive-
ness. Immunotherapies targeting immune checkpoints (e.g., anti–cytotoxic T lympho-
cyte associated antigen-4 and anti–programmed death-1 antibodies) are a standard com-
ponent of care for patients with advanced cancers. Immune checkpoint inhibitors (ICIs) 
have led to improvements in the survival rate, but only a subset of patients respond to 
ICIs. Recent studies have reported that the efficacy of ICIs in cancer patients is deter-
mined by the T cell inflamed tumor microenvironment [1-3]. The molecular mecha-
nisms of resistance have not yet been elucidated in detail. Nevertheless, previous studies 
have reported scoring methods for distinguishing non–T cell inflamed from T cell in-
flamed tumors based on gene expression data [4,5]. 

Unfortunately, general researchers who are unfamiliar with the detailed calculations in-
volved in the equations can experience difficulties using these scoring formulas to con-
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duct analyses. For this reason, we recently developed Tcel-
lInflamedDetector, an R package that predicts T cell inflamed tu-
mors when given RNA-sequencing expression data. This package 
will be beneficial to optimize the selection of patients predicted to 
benefit from ICIs. TcellInflamedDetector implements the equa-
tion developed by Spranger et al. [5] to differentiate non–T cell in-
flamed and T cell inflamed tumor subtypes.  

Input Data and Processing 

As shown in Fig. 1, TcellInflamedDetector requires RNA-sequenc-
ing count input data with genes and sample identifiers. Users follow 
the steps for data processing that are summarize in the Tcel-
lInflamedDetector manual on GitHub [6]. The input CSV file is 
RNA sequencing log count per million (CPM) data. The count 
matrix file is converted by EdgeR aveLogCPM() and the calc-
NormFactor function using the trimmed mean of the m-values 
method. Users can extract previously established gene signatures 
indicative of a T cell inflamed tumor microenvironment, which in-
clude the cytotoxic T lymphocyte (CTL) signature genes CD8A, 
CD8B, GZMA, GZMB, and PRF1 using R code [7-10]. The estab-
lished gene signatures were referenced with the Gajewski T cell-in-
flamed signature, interferon-gamma related signature, T cell effec-

tor signature, and immune cytolytic activity signature [4,5]. 

Estimating T Cell Inflamed and Non–T Cell 
Inflamed Samples

As shown in Fig. 2, gene expression values were converted to a 
score Si =  µi ±  βiσi (i =  1, 2, … n), where µ and σ represent the 
mean and standard deviation (SD) of the ith gene’s expression 
across all samples, n is the total number of genes, β represents the 
distance between the ith gene’s expression in a sample and the 
mean in units of the SD (equivalent to a z-score). The threshold 
for non–T cell inflamed and T cell inflamed tumors was β0 =  0.1. 
The algorithm is described in detail below: 

If the z-score value βi is greater than the threshold (β0 =  0.1), then 
+1 is assigned. Otherwise, if the z-score value βi is less than the thresh-
old (β0 =  0.1), then ‒1 is assigned. If the sum of the column of genes 
with assigned values is greater than half of the number of CTL genes, 
then the output is a classification of “T cell inflamed.” If the sum of a 
column of genes with assigned values is less than half of the num-
ber of CTL genes, then the classification is “non–T cell inflamed.” 
Otherwise, the sample is classified as “intermediate.” 

Users of the R package can obtain results in the format of a .csv 
file that contains data on the classification of samples as T cell in-

Fig. 1. An exemplary code for extraction of T cell effector gene subset.

Fig. 2. An exemplary usage of R code.
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Fig. 3. (A) An input file and generated output files. (B) Processing diagram for T cell inflamed function prediction. (C) T cell inflamed 
annotation of Heatmap expression in The Cancer Genome Atlas (TCGA)  lung adenocarcinoma (LUAD) samples.
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flamed, non–T cell inflamed, and intermediate. If users want to 
modify the CTL gene list when running the R package, they do 
not have to modify the complex R code. Instead, they can simply 
revise the gene list contained in the CTL.csv file. 

Output 

Five output formats are available: CTL_Selected_Inputfile.csv, 
Tcell_NonTcell_Result.csv, zscore_convert.csv, Zscore_convert_
sum.csv, and zscore_data.csv. Fig. 3 presents examples of the predic-
tion results of T cell inflamed, intermediate, and non–T cell inflamed 
groups. Users can check the expression patterns of specific genes 
through a heatmap. We also confirmed that T cell inflamed samples 
showed high expression of T cell effector gene signatures [10]. 

Finally, we conducted a test to demonstrate our tool’s flexibility; 
we tested it on The Cancer Genome Atlas (TCGA) lung adenocar-
cinoma RNA-sequencing dataset available through the TCGA Re-
search Network [11]. Each sample was labeled according to the 
TCGA barcode, which contained gene names. Our package suc-
cessfully selected subsets of gene expression data from the raw 
count data. Thus, TcellInflamedDetector can be beneficial for fu-
ture cancer immunotherapy vaccine developers and researchers. 

ORCID 

San-Duk Yang: https://orcid.org/0000-0002-1276-365X 
Hyun-Seok Park: https://orcid.org/0000-0002-1237-8831 

Authors’ Contribution 

Conceptualization: SDY, HSP. Data curation: SDY, HSP. Method-
ology: SDY, HSP. Writing - original draft: SDY, HSP.  

Conflicts of Interest  

No potential conflict of interest relevant to this article was report-
ed.  

Acknowledgments 

This research was partially supported by Kyung Hee Cyber Uni-
versity. 

References 

1. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell 
dysfunction and exclusion predict cancer immunotherapy re-
sponse. Nat Med 2018;24:1550-1558. 

2. Trujillo JA, Sweis RF, Bao R, Luke JJ. T cell-inflamed versus 
non-T cell-inflamed tumors: a conceptual framework for cancer 
immunotherapy drug development and combination therapy se-
lection. Cancer Immunol Res 2018;6:990-1000. 

3. Gajewski TF, Corrales L, Williams J, Horton B, Sivan A, Spranger 
S. Cancer immunotherapy targets based on understanding the T 
cell-inflamed versus non-T cell-inflamed tumor microenviron-
ment. Adv Exp Med Biol 2017;1036:19-31. 

4. Luke JJ, Bao R, Sweis RF, Spranger S, Gajewski TF. WNT/be-
ta-catenin pathway activation correlates with immune exclusion 
across human cancers. Clin Cancer Res 2019;25:3074-3083. 

5. Spranger S, Luke JJ, Bao R, Zha Y, Hernandez KM, Li Y, et al. 
Density of immunogenic antigens does not explain the presence 
or absence of the T-cell-inflamed tumor microenvironment in 
melanoma. Proc Natl Acad Sci U S A 2016;113:E7759-E7768. 

6. TcellInflamedDetector Manual. San Francisco: GitHub, 2021. 
Accessed 2022 Jan 15. Available from: https://github.com/san-
dukyang/Tcellinflamed/wiki. 

7. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, 
Kaufman DR, et al. IFN-gamma-related mRNA profile predicts 
clinical response to PD-1 blockade. J Clin Invest 2017;127:2930-
2940. 

8. Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic beta-caten-
in signalling prevents anti-tumour immunity. Nature 2015;523: 
231-235. 

9. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon 
MS, et al. Predictive correlates of response to the anti-PD-L1 anti-
body MPDL3280A in cancer patients. Nature 2014;515:563-
567. 

10. Shah S, Ward JE, Bao R, Hall CR, Brockstein BE, Luke JJ. Clinical 
response of a patient to anti-PD-1 immunotherapy and the im-
mune landscape of testicular germ cell tumors. Cancer Immunol 
Res 2016;4:903-909. 

11. Wang Z, Jensen MA, Zenklusen JC. A practical guide to the can-
cer genome atlas (TCGA). Methods Mol Biol 2016;1418:111-
141. 

https://doi.org/10.5808/gi.220054 / 4

Yang SD and Park HS • MPI-GWAS: a supercomputing-aided permutation

http://orcid.org/0000-0002-1276-365X
http://orcid.org/0000-0002-1237-8831
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1158/2326-6066.cir-18-0277
https://doi.org/10.1158/2326-6066.cir-18-0277
https://doi.org/10.1158/2326-6066.cir-18-0277
https://doi.org/10.1158/2326-6066.cir-18-0277
https://doi.org/10.1007/978-3-319-67577-0_2
https://doi.org/10.1007/978-3-319-67577-0_2
https://doi.org/10.1007/978-3-319-67577-0_2
https://doi.org/10.1007/978-3-319-67577-0_2
https://doi.org/10.1158/1078-0432.ccr-18-1942
https://doi.org/10.1158/1078-0432.ccr-18-1942
https://doi.org/10.1158/1078-0432.ccr-18-1942
https://doi.org/10.1073/pnas.1609376113
https://doi.org/10.1073/pnas.1609376113
https://doi.org/10.1073/pnas.1609376113
https://doi.org/10.1073/pnas.1609376113
https://www.ncbi.nlm.nih.gov/pubmed/28650338
https://www.ncbi.nlm.nih.gov/pubmed/28650338
https://www.ncbi.nlm.nih.gov/pubmed/28650338
https://www.ncbi.nlm.nih.gov/pubmed/28650338
https://doi.org/10.1038/nature14404
https://doi.org/10.1038/nature14404
https://doi.org/10.1038/nature14404
https://doi.org/10.1038/nature14011
https://doi.org/10.1038/nature14011
https://doi.org/10.1038/nature14011
https://doi.org/10.1038/nature14011
https://doi.org/10.1158/2326-6066.cir-16-0087
https://doi.org/10.1158/2326-6066.cir-16-0087
https://doi.org/10.1158/2326-6066.cir-16-0087
https://doi.org/10.1158/2326-6066.cir-16-0087
https://doi.org/10.1007/978-1-4939-3578-9_6
https://doi.org/10.1007/978-1-4939-3578-9_6
https://doi.org/10.1007/978-1-4939-3578-9_6

