• Title/Summary/Keyword: defense proteins

Search Result 187, Processing Time 0.03 seconds

Iron Starvation-Induced Proteomic Changes in Anabaena (Nostoc) sp. PCC 7120: Exploring Survival Strategy

  • Narayan, Om Prakash;Kumari, Nidhi;Rai, Lal Chand
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.136-146
    • /
    • 2011
  • This study provides first-hand proteomic data on the survival strategy of Anabaena sp. PCC 7120 when subjected to long-term iron-starvation conditions. 2D-gel electrophoresis followed by MALDI-TOF/MS analysis of iron-deficient Anabaena revealed significant and reproducible alterations in ten proteins, of which six are associated with photosynthesis and respiration, three with the antioxidative defense system, and the last, hypothetical protein all1861, conceivably connected with iron homeostasis. Iron-starved Anabaena registered a reduction in growth, photosynthetic pigments, PSI, PSII, whole-chain electron transport, carbon and nitrogen fixation, and ATP and NADPH content. The kinetics of hypothetical protein all1861 expression, with no change in expression until day 3, maximum expression on the $7^{th}$ day, and a decline in expression from the $15^{th}$ day onward, coupled with in silico analysis, suggested its role in iron sequestration and homeostasis. Interestingly, the up-regulated FBP-aldolase, Mn/Fe-SOD, and all1861 all appear to assist the survival of Anabeana subjected to iron-starvation conditions. Furthermore, the $N_2$-fixation capabilities of the iron-starved Anabaena encourage us to recommend its application as a biofertilizer, particularly in iron-limited paddy soils.

Complementation of E. coli cysQ Mutant with Arabidopsis AHL Gene Encoding a 3'(2'),5'-Bisphosphate Nucleotidase

  • Cheong, Jong-Joo;Kwon, Hawk-Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.183-186
    • /
    • 2005
  • Arabidopsis AHL gene encodes a 3'(2')-phosphoadenosine 5'-phosphate (PAP)-specific phosphatase that plays a role in the sulfate activation pathway. We complemented E. coli cysQ mutant defective in cysteine biosynthesis with the AHL gene. AHL cDNA was cloned into the prokaryotic expression vector pKK388-1 and transformed into the bacterial mutant. Since cysQ mutant is a leaky cysteine auxotroph only under aerobic conditions, the bacteria were grown in liquid media with vigorous shaking to provide more aeration. In cysteine-free medium, cysQ mutant and the mutant harboring empty vector did not grow well, whereas cells harboring AHL cDNA exhibited significantly improved growth with doubling time of approximately 3 h. cysQ is known to encode a 3'(2'),5'-diphosphonucleoside 3'(2')-phosphohydrolase (DPNPase). However, our data suggest that cysQ protein has PAP-specific phosphatase activity in addition to DPNPase activity. Microbial complementation procedure described in this paper is useful for structure-activity studies of PAP-specific phosphatases identified from microbes and plants.

Control of Singlet Oxygen-induced Oxidative Damage in Escherichia coli

  • Kim, Sun-Yee;Kim, Eun-Ju;Park, Jeen-Woo
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.353-357
    • /
    • 2002
  • Singlet oxygen ($^1O_2$) is highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. The oxyR gene product regulates the expression of the enzymes and proteins that are needed for cellular protection against oxidative stress. In this study, the role of oxyR in cellular defense against a singlet oxygen was investigated using Escherichia coli oxyR mutant strains. Upon exposure to methylene blue and visible light, which generates singlet oxygen, the oxyR overexpression mutant was much more resistant to singlet oxygen-mediated cellular damage when compared to the oxyR deletion mutant in regard to growth kinetics, viability and protein oxidation. Induction and inactivation of major antioxidant enzymes, such as superoxide desmutase and catalase, were observed after their exposure to a singlet oxygen generating system in both oxyR strains. However, the oxyR overexpression mutant maintained significantly higher activities of anticxidant enzymes than did the oxyR deletion mutant. These results suggest that the oxyR regulon plays an important protective role in singlet oxygen-mediated cellular damage, presumably through the protection of antioxidant enzymes.

Dysregulation of NRF2 in Cancer: from Molecular Mechanisms to Therapeutic Opportunities

  • Jung, Byung-Jin;Yoo, Hwan-Sic;Shin, Sooyoung;Park, Young-Joon;Jeon, Sang-Min
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.57-68
    • /
    • 2018
  • Nuclear factor E2-related factor 2 (NRF2) plays an important role in redox metabolism and antioxidant defense. Under normal conditions, NRF2 proteins are maintained at very low levels because of their ubiquitination and proteasomal degradation via binding to the kelch-like ECH associated protein 1 (KEAP1)-E3 ubiquitin ligase complex. However, oxidative and/or electrophilic stresses disrupt the KEAP1-NRF2 interaction, which leads to the accumulation and transactivation of NRF2. During recent decades, a growing body of evidence suggests that NRF2 is frequently activated in many types of cancer by multiple mechanisms, including the genetic mutations in the KEAP1-NRF2 pathway. This suggested that NRF2 inhibition is a promising strategy for cancer therapy. Recently, several NRF2 inhibitors have been reported with anti-tumor efficacy. Here, we review the mechanisms whereby NRF2 is dysregulated in cancer and its contribution to the tumor development and radiochemoresistance. In addition, among the NRF2 inhibitors reported so far, we summarize and discuss repurposed NRF2 inhibitors with their potential mechanisms and provide new insights to develop selective NRF2 inhibitors.

New Players in the BRCA1-mediated DNA Damage Responsive Pathway

  • Kim, Hongtae;Chen Junjie
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.457-461
    • /
    • 2008
  • DNA damage checkpoint is an important self-defense mechanism for the maintenance of genome stability. Defects in DNA damage signaling and repair lead to various disorders and increase tumor incidence in humans. In the past 10 years, we have identified many components involved in the DNA damage-signaling pathway, including the product of breast cancer susceptibility gene 1 (BRCA1). Mutations in BRCA1 are associated with increased risk of breast and ovarian cancers, highlighting the importance of this DNA damage-signaling pathway in tumor suppression. While it becomes clear that BRCA1 plays a crucial role in the DNA damage responsive pathway, exactly how BRCA1 receives DNA damage signals and exerts its checkpoint function has not been fully addressed. A series of recent studies reported the discovery of many novel components involved in DNA damage-signaling pathway. These newly identified checkpoint proteins, including RNF8, RAP80 and CCDC98, work in concern in recruiting BRCA1 to DNA damage sites and thus regulate BRCA1 function in G2/M checkpoint control. This review will summarize these recent findings and provide an updated view of the regulation of BRCA1 in response to DNA damage.

Expressed sequence tags analysis of immune-relevant genes in rock bream Oplegnathus fasciatus peripheral leukocytes stimulated with LPS

  • Lee, Jeong-Ho;Noh, Jae-Koo;Kim, Hyun-Chul;Park, Choul-Ji;Min, Byung-Hwa;Choi, Sang-Jun;Myeong, Jeong-In;Park, Hyung-Jun;Park, Chan-Il
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.353-366
    • /
    • 2009
  • We constructed a rock bream Oplegnathus fasciatus leukocyte cDNA library and a total of 795 expressed sequence tag (EST) clones were generated. Gene annotation procedures and homology searches of the sequenced ESTs were locally done by BLASTX for amino acid similarity comparisons. Of the 795 EST clones, 491 different ESTs showed significant homology to previously described genes while 304 ESTs were unidentified, hypothetical, or unnamed proteins. Encoding 121 different sequences were identified as putative bio-defense genes or genes associated with immune response.

Isolation and Characterization of a Trypsin Inhibitor and a Lectin from Glycine max cv. Large Black Soybean

  • Ye, Xiu Juan;Ng, Tzi Bun
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1173-1179
    • /
    • 2009
  • Trypsin inhibitors and lectins are defense proteins produced by many organisms. From Chinese 'Large Black Soybeans', a 60 kDa lectin and a 20 Da trypsin inhibitor (TI) were isolated using chromatography on Q-Sepharose, Mono Q, and Superdex 75. The TI inhibited trypsin and chymotrypsin with an $IC_{50}$ of 5.7 and $5{\mu}M$, respectively. Trypsin inhibitory activity of the TI was stable from pH 3 to 13 and from 0 to $65^{\circ}C$. Hemagglutinating activity of the lectin was stable from pH 2 to 13 and from 0 to $65^{\circ}C$. The TI was inhibited by dithiothreitol, signifying the importance of disulfide bond. The TI and the lectin inhibited HIV-1 reverse transcriptase ($IC_{50}$=44 and $26{\mu}M$), and proliferation of breast cancer cells ($IC_{50}$=42 and $13.5{\mu}M$) and hepatoma cells ($IC_{50}$=96 and $175{\mu}M$). The hemagglutinating activity of the lectin was inhibited most potently by L-arabinose. Neither the lectin nor the TI displayed antifungal activity.

The CRISPR Growth Spurt: from Bench to Clinic on Versatile Small RNAs

  • Bayat, Hadi;Omidi, Meysam;Rajabibazl, Masoumeh;Sabri, Suriana;Rahimpour, Azam
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.207-218
    • /
    • 2017
  • Clustered regulatory interspaced short palindromic repeats (CRISPR) in association with CRISPR-associated protein (Cas) is an adaptive immune system, playing a pivotal role in the defense of bacteria and archaea. Ease of handling and cost effectiveness make the CRISPR-Cas system an ideal programmable nuclease tool. Recent advances in understanding the CRISPR-Cas system have tremendously improved its efficiency. For instance, it is possible to recapitulate the chronicle CRISPR-Cas from its infancy and inaugurate a developed version by generating novel variants of Cas proteins, subduing off-target effects, and optimizing of innovative strategies. In summary, the CRISPR-Cas system could be employed in a number of applications, including providing model systems, rectification of detrimental mutations, and antiviral therapies.

Isolation and Characterization of Calmodulin 2 (CICAM2) Gene from Codonopsis lanceolata

  • Lee, Kang;In, Jun-Gyo;Yu, Chang-Yeon;Min, Byung-Hoon;Chung, Ill-Min;Kim, Se-Young;Kim, Yeong-Chae;Yang, Deok-Chun
    • Plant Resources
    • /
    • v.7 no.3
    • /
    • pp.174-180
    • /
    • 2004
  • Calmodulin, a $Ca^{2+}$-binding protein, has no enzyme activity. It combines with $Ca^{2+}$ and makes variable proteins to an active form. Calmodulin 2 is a ubiquitous protein in plants. To investigate the defense mechanism against various stresses, a clone encoding a calmodulin 2 protein was isolated from a cDNA library prepared from taproot mRNAs of Codonopsis lanceolata. The cDNA, designated CICAM2, is 719 nucleotides long and has an open reading frame of 450 bp with a deduced amino acid sequence of 149 residues. The deduced amino acid sequence of CICAM2 showed a high similarity with calmodulins of P. x hybrida (P27163) 97%, N. tabacum (BAB61908) 97%, S. tuberosum (AAA74405) 96%, Z. mays (CAA74307) 92%, C. richardii (AF510075) 93%, M. truncatula (AAM81203) 91%, and G. max (P62163) 91%. The transcriptional expression of the CICAM2 gene, was gradually increased by the CaCl$_2$ treatment. Whereas its expression And it was gradually decreased in the cold stress treatment.ent.

  • PDF

Proteotoxic Stress and Cell Lifespan Control

  • Cenci, Simone;Pengo, Niccolo;Sitia, Roberto
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.323-328
    • /
    • 2008
  • Eukaryotic cells continuously integrate intrinsic and extrinsic signals to adapt to the environment. When exposed to stressful conditions, cells activate compartment-specific adaptive responses. If these are insufficient, apoptosis ensues as an organismal defense line. The mechanisms that sense stress and set the transition from adaptive to maladaptive responses, activating apoptotic programs, are the subject of intense studies, also for their potential impact in cancer and degenerative disorders. In the former case, one would aim at lowering the threshold, in the latter instead to increase it. Protein synthesis, consuming energy for anabolic processes as well as for byproducts disposal, can be a significant source of stress, particularly when difficult-to-fold proteins are produced. Recent work from our and other laboratories on the differentiation of antibody secreting cells, revealed a regulatory circuit that integrates protein synthesis, secretion and degradation (proteostasis), into cell lifespan determination. The apoptotic elimination - after an industrious, yet short lifetime - of terminal immune effectors is crucial to maintain immune homeostasis. Linking proteostasis to cell death, this paradigm might prove useful for biotechnological purposes, and the design of novel anti-cancer therapies.