• Title/Summary/Keyword: defect classification

Search Result 278, Processing Time 0.031 seconds

Defect Classification of Components for SMT Inspection Machines (SMT 검사기를 위한 불량유형의 자동 분류 방법)

  • Lee, Jae-Seol;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.982-987
    • /
    • 2015
  • The inspection machine in SMT (Surface Mount Technology) line detects the assembly defects such as missing, misalignment, loosing, or tombstone. We propose a new method to classify the defect types of chip components by processing the image of PCB. Two original images are obtained from horizontal lighting and vertical lighting. The image of the component is divided into two soldering regions and one packaging region. The features are extracted by appling the PCA (Principle Component Analysis) to each region. The MLP (Multilayer Perceptron) and SVM (Support Vector Machine) are then used to classify the defect types by learning. The experimental results are presented to show the usefulness of the proposed method.

The Defect Detection and Evaluation of Austenitic Stainless Steel 304 Weld Zone using Ultrasonic Wave and Neuro (초음파와 신경망을 이용한 오스테나이트계 스테인리스강 304 용접부의 결함 검출 및 평가)

  • Yi, Won;Yun, In-Sik
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.64-73
    • /
    • 1998
  • This paper is concerned with defects detection and evaluation of heat affected zone (HAZ) in austenitic stainless steel type 304 by ultrasonic wave and neural network. In experiment, the reflected ultrasonic defect signals from artificial defects (side hole, vertical hole, notch) of HAZ appears as beam distance of prove-defect, distance of probe-surface, depth of defect-surface on CRT. For defect classification simulation, neural network system was organized using total results of ultrasonic experiment. The organized neural network system was learned with the accuracy of 99%. Also it could be classified with the accuracy of 80% in side hole, and 100% in vertical hole, 90% in notch about ultrasonic pattern recognition. Simulation results of neural network agree fairly well with results of ultrasonic experiment. Thus were think that the constructed system (ultrasonic wave - neural network) in this work is useful for defects dection and classification such as holes and notches in HAZ of austenitic stainless steel 304.

  • PDF

Defect Detection and Defect Classification System for Ship Engine using Multi-Channel Vibration Sensor (다채널 진동 센서를 이용한 선박 엔진의 진동 감지 및 고장 분류 시스템)

  • Lee, Yang-Min;Lee, Kwang-Young;Bae, Seung-Hyun;Jang, Hwi;Lee, Jae-Kee
    • The KIPS Transactions:PartA
    • /
    • v.17A no.2
    • /
    • pp.81-92
    • /
    • 2010
  • There has been some research in the equipment defect detection based on vibration information. Most research of them is based on vibration monitoring to determine the equipment defect or not. In this paper, we introduce more accurate system for engine defect detection based on vibration information and we focus on detection of engine defect for boat and system control. First, it uses the duplicated-checking method for vibration information to determine the engine defect or not. If there is a defect happened, we use the method using error part of vibration information basis with error range to determine which kind of error is happened. On the other hand, we use the engine trend analysis and standard of safety engine to implement the vibration information database. Our simulation results show that the probability of engine defect determination is 100% and the probability of engine defect classification and detection is 96%.

A study on the classification of various defects in concrete based on transfer learning (전이학습 기반 콘크리트의 다양한 결함 분류에 관한 연구)

  • Younggeun Yoon;Taekeun Oh
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.569-574
    • /
    • 2023
  • For maintenance of concrete structures, it is necessary to identify and maintain various defects. With the current method, there are problems with efficiency, safety, and reliability when inspecting large-scale social infrastructure, so it is necessary to introduce a new inspection method. Recently, with the development of deep learning technology for images, concrete defect classification research is being actively conducted. However, studies on contamination and spalling other than cracks are limited. In this study, a variety of concrete defect type classification models were developed through transfer learning on a pre-learned deep learning model, factors that reduce accuracy were derived, and future development directions were presented. This is expected to be highly utilized in the field of concrete maintenance in the future.

Highlighting Defect Pixels for Tire Band Texture Defect Classification (타이어 밴드 직물의 불량유형 분류를 위한 불량 픽셀 하이라이팅)

  • Rakhmatov, Shohruh;Ko, Jaepil
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.113-118
    • /
    • 2022
  • Motivated by people highlighting important phrases while reading or taking notes we propose a neural network training method by highlighting defective pixel areas to classify effectively defect types of images with complex background textures. To verify our proposed method we apply it to the problem of classifying the defect types of tire band fabric images that are too difficult to classify. In addition we propose a backlight highlighting technique which is tailored to the tire band fabric images. Backlight highlighting images can be generated by using both the GradCAM and simple image processing. In our experiment we demonstrated that the proposed highlighting method outperforms the traditional method in the view points of both classification accuracy and training speed. It achieved up to 13.4% accuracy improvement compared to the conventional method. We also showed that the backlight highlighting technique tailored for highlighting tire band fabric images is superior to a contour highlighting technique in terms of accuracy.

Assessment of Defect Risks in Apartment Projects based on the Defect Classification Framework (효율적인 품질관리를 위한 공동주택 하자위험 분석)

  • Jang, Ho-Myun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.510-519
    • /
    • 2019
  • The aim of this study was to set a defect classification framework and evaluate the defect risks in apartment buildings For this, approximately 15,056 defect items for 133 apartment buildings were examined. As a result of the analysis, the major defect of the RC work was cracks, which were found mainly in public locations. Moreover, the RC work was found to exhibit a high defect risk of water problem and surface appearance, which are highly connected with cracks. Second, the finish work has a high defect risk because it is composed of various work types, and there are many kinds of materials and construction parts involved. Third, the major defects of the waterproof work were incorrect installation and missing tasks, which have high defect risks in the garage. This is because defects that require rework occur mainly in the underground garage. Based on these results, this study proposed countermeasures for defect risk management to be considered in the construction, handover, post-handover, and occupancy phases. These have been set in detail based on the three zones: low frequency high severity (LFHS), low frequency low severity (LFLS), and high frequency low severity (HFLS).

Feature extraction method using graph Laplacian for LCD panel defect classification (LCD 패널 상의 불량 검출을 위한 스펙트럴 그래프 이론에 기반한 특성 추출 방법)

  • Kim, Gyu-Dong;Yoo, Suk-I.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.522-524
    • /
    • 2012
  • For exact classification of the defect, good feature selection and classifier is necessary. In this paper, various features such as brightness features, shape features and statistical features are stated and Bayes classifier using Gaussian mixture model is used as classifier. Also feature extraction method based on spectral graph theory is presented. Experimental result shows that feature extraction method using graph Laplacian result in better performance than the result using PCA.

The Development of Surface Inspection System Using the Real-time Image Processing (실시간 영상처리를 이용한 표면흠검사기 개발)

  • 이종학;박창현;정진양
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.171-171
    • /
    • 2000
  • We have developed m innovative surface inspection system for automated quality control for steel products in POSCO. We had ever installed the various kinds of surface inspection systems, such as a linear CCD and a laser typed surface inspection systems at cold rolled strips production lines. But, these systems cannot fulfill the sufficient detection and classification rate, and real time processing performance. In order to increase detection and classification rate, we have used the Dark, Bright and Transition Field illumination and area type CCD camera, and fur the real time image processing, parallel computing has been used. In this paper, we introduced the automatic surface inspection system and real time image processing technique using the Object Detection, Defect Detection, Classification algorithms and its performance obtained at the production line.

  • PDF

Feature Extraction of Ultrasonic Signal due to Form of Defect in Solids (고체내부에 존재하는 결함의 형태에 따른 초음파 신호의 특징 추출)

  • 문상택
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.169-173
    • /
    • 1993
  • In this paper, the features extraction of reflected signals from various type of defects existing in the solid has been studied by Wiener filtering technique. In this experiment, three types of the defect have been considered; a flat cut, a angular cut and a circular hole. All of the defects have the same size, 20mm in diameter and have been located at 45mm in depth from the aluminum surface. In the result of the experiment, it has been found that the wiener filtering technique used for features extraction from the reflected signal corresponding to each defect have been very effective for defect classification.

  • PDF

A Study on Defect Prediction through Real-time Monitoring of Die-Casting Process Equipment (주조공정 설비에 대한 실시간 모니터링을 통한 불량예측에 대한 연구)

  • Chulsoon Park;Heungseob Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.157-166
    • /
    • 2022
  • In the case of a die-casting process, defects that are difficult to confirm by visual inspection, such as shrinkage bubbles, may occur due to an error in maintaining a vacuum state. Since these casting defects are discovered during post-processing operations such as heat treatment or finishing work, they cannot be taken in advance at the casting time, which can cause a large number of defects. In this study, we propose an approach that can predict the occurrence of casting defects by defect type using machine learning technology based on casting parameter data collected from equipment in the die casting process in real time. Die-casting parameter data can basically be collected through the casting equipment controller. In order to perform classification analysis for predicting defects by defect type, labeling of casting parameters must be performed. In this study, first, the defective data set is separated by performing the primary clustering based on the total defect rate obtained during the post-processing. Second, the secondary cluster analysis is performed using the defect rate by type for the separated defect data set, and the labeling task is performed by defect type using the cluster analysis result. Finally, a classification learning model is created by collecting the entire labeled data set, and a real-time monitoring system for defect prediction using LabView and Python was implemented. When a defect is predicted, notification is performed so that the operator can cope with it, such as displaying on the monitoring screen and alarm notification.