• Title/Summary/Keyword: deeplearning

Search Result 15, Processing Time 0.026 seconds

Development of Short-term Forecast Model using ERA5 reanalysis data based on Deep Learning model (ERA5 재해석 자료를 활용한 Deep Learning 모델 기반의 단기 예측 모형 개발)

  • Jin-Young Kim;Sumya Uranchimeg;Ji-Moon Yuk;Chan Ho Park;Boo Kyoung Park;Hee Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.289-289
    • /
    • 2023
  • 4차산업 혁명이 도래한 이후로 전세계적으로 AI 기술이 유래 없는 속도로 발달 및 활용되고 있으며, 다양한 분야에서 AI 기법을 도입한 연구가 활발히 진행 중에 있다. 최근 수자원 분야에서는 단기 강우 예측, 댐 유입량 예측 및 하천 수위 예측 등의 분야에서 AI 기술이 접목되어 꾸준한 기술 개발이 이루어지고 있다. 그러나 단변량으로 축척된 자료를 활용하여 중·장기 모형 개발 연구가 다수 진행되고 있지만, 급격한 기후변화 현상과 복잡한 매커니즘을 보이고 있는 기상현상의 경우 단변량 분석으로서는 정확도가 저하 될 수 있는 우려가 있는 것이 현실이다. 이에 본 연구에서는 상기에 제시된 단점을 극복하고자 다양한 기상자료를 검증·예측인자로 활용함과 동시에 Deeplearning 모형과 결합하여 신뢰성 있는 단기 강수 예측이 가능한 모형을 개발하였다. 본 연구에서는 유럽중기예보센터(ECMWF, European Center for Medium-Range Weather Forecasts)에서 제공하고 있는 ERA5 재해석 자료를 활용하였으며, Deeplearning 모형과 결합하여 단기 강우 예측이 가능한 모형을 개발하였다. 1차적으로 격자자료(25km×25km)로 제공되고 있는 ERA5 자료를 상세화(downscaling) 모형에 적용하여 기상청 관측소와 비교·검증하였으며, Deeplearning 모형을 통해 단기 예측이 가능한 모형으로 확장하였다. 이때 Deeplearning의 다양한 모형 중 시계열 분석에 있어 예측 성능이 높은 LSTM 모형을 활용하였으며, 제공되고 있는 대기 변수의 상호관계를 노드간 연결을 통해 결과의 정확도와 신뢰성을 확보하였다. 본 연구 결과는 기관별로 제공하고 있는 예측 수준을 상회하는 결과를 도출하였으며, 홍수기에 집중되는 강우량을 예측하여 대비·대책을 선제적으로 마련할 수 있는 자료로써의 활용성이 높을 것으로 사료된다.

  • PDF

Detection Model based on Deeplearning through the Characteristics Image of Malware (악성코드의 특성 이미지화를 통한 딥러닝 기반의 탐지 모델)

  • Hwang, Yoon-Cheol;Mun, Hyung-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.137-142
    • /
    • 2021
  • Although the internet has gained many conveniences and benefits, it is causing economic and social damage to users due to intelligent malware. Most of the signature-based anti-virus programs are used to detect and defend this, but it is insufficient to prevent malware variants becoming more intelligent. Therefore, we proposes a model that detects and defends the intelligent malware that is pouring out in the paper. The proposed model learns by imaging the characteristics of malware based on deeplearning, and detects newly detected malware variants using the learned model. It was shown that the proposed model detects not only the existing malware but also most of the variants that transform the existing malware.

A Study on the Development of a Program to support VFSS by using Deeplearning (딥러닝을 활용한 VFSS를 도와주는 프로그램 개발 연구)

  • Choi, Dong-gyu;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.58-61
    • /
    • 2018
  • In Korea, current medical technology is the highest level in the world. As a result, many doctors have specialized knowledge of various disorders or diseases, and are proceeding in a better way. With such high medical technology, it is possible to increase the probability of success of surgery to provide high reliability to patients. Rehabilitation is also a form of medical treatment that reduces the side effects that occur after surgery that is done for quick cure. However, the situation in this section is slightly different. There are moves to develop rehabilitation devices and operations, but most of them are now dependent on foreign technology. Rehabilitation therapy, which we commonly know, is dominated by behavior. However, it is also a kind of rehabilitation to find out how much the patient's symptoms are improved or recovered. In this paper, we have studied the development of a program by using the Deeplearning method in order to detect the problem of the food swallowing operation by the severity.

  • PDF

Developing Chatbot for Training Seafarers for better Understanding and Communication by Using Real VTS Data

  • Choe, Seong-Cheol;Seo, Won-Cheol;Choe, Seung-Hui;Jang, Eun-Gyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.36-38
    • /
    • 2017
  • The advent of the era of data age and advances inartificial intelligence technology has led to innovations in various business areas. In particular, many attempts have been made to improve the stability of the marine accident, which has not previously been applied by a data-drive approach. Most of the marine accidents happen at a time when the vessel isapproaching a port and preparing for berthing. Although the cause of the accident has many factors, it is often caused by the difficulties of communication between the ship navigator and the control center. In particular, communication in English makes difficulties for navigators, not English astheir first language. To do this, proper English conversation education forsailors is very important. In order to support the issue, this study presents data and framework for the development of a chatbot for ship safety education.

  • PDF

Forecasting Container Throughput with Long Short Term Memory (LSTM을 활용한 컨테이너 물동량 예측)

  • Lim, Sangseop
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.617-618
    • /
    • 2020
  • 우리나라의 지리적인 여건상 대륙과 연결되지 않기 때문에 해상운송에 절대적으로 의존하고 있다. 해상운송에 있어 항만시설의 확보가 필요하며 대외무역의존도가 높은 우리나라의 경우 더욱 중요한 역할을 한다. 항만시설은 장기적인 항만수요예측을 통해 대규모 인프라투자를 결정하며 단기적인 예측은 항만운영의 효율성을 개선하고 항만의 경쟁력을 제고하는데 기여하므로 예측의 정확성을 높이기 위해 많은 노력이 필요하다. 본 논문에서는 딥러닝 모델 중에 하나인 LSTM(Long Short Term Memory)을 적용하여 우리나라 주요항만의 컨테이너 물동량 단기예측을 수행하여 선행연구들에서 주류를 이뤘던 ARIMA류의 시계열모델과 비교하여 예측성능을 평가할 것이다. 본 논문은 학문적으로 항만수요예측에 관한 새로운 예측모델을 제시하였다는 측면에서 의미가 있으며 실무적으로 항만수요예측에 대한 정확성을 개선하여 항만투자의사결정에 과학적인 근거로서 활용이 가능할 것으로 기대된다.

  • PDF

Autonomous Driving System in Library using 6 Dof Manipulator based on Deeplearning (딥러닝, 로봇팔을 이용한 도서관 자율주행 시스템)

  • Chang-Min Lee;Yu-Seok Shin;Do-Hyeon Kim;Hyeon-Min Jo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.809-810
    • /
    • 2023
  • 도서관 자동화 시스템 개발로 이용자가 책을 직접 찾지 않고, 대출하고자 하는 책을 PC에 입력하면 자율주행으로 책이 있는 서가로 이동, 딥러닝 기반의 로봇팔로 책을 잡고 기존 위치로 복귀하여 자동으로 대출과 운반이 가능한 로봇의 시스템을 제안한다.

Web based Customer Power Demand Variation Estimation System using LSTM (LSTM을 이용한 웹기반 수용가별 전력수요 변동성 평가시스템)

  • Seo, Duck Hee;Lyu, Joonsoo;Choi, Eun Jeong;Cho, Soohwan;Kim, Dong Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.587-594
    • /
    • 2018
  • The purpose of this study is to propose a power demand volatility evaluation system based on LSTM and not to verify the accuracy of the demand module which is a core module, but to recognize the sudden change of power pattern by using deeplearning in the actual power demand monitoring system. Then we confirm the availability of the module. Also, we tried to provide a visualized report so that the manager can determine the fluctuation of the power usage patten by applying it as a module to the web based system. It is confirmed that the power consumption data shows a certain pattern in the case of government offices and hospitals as a result of implementation of the volatility evaluation system. On the other hand, in areas with relatively low power consumption, such as residential facilities, it was not appropriate to evaluate the volatility.

A Study of Railway Bridge Automatic Damage Analysis Method Using Unmanned Aerial Vehicle and Deep Learning-based Image Analysis Technology (무인이동체와 딥러닝 기반 이미지 분석 기술을 활용한 철도교량 자동 손상 분석 방법 연구)

  • Na, Yong Hyoun;Park, Mi Yeon
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.556-567
    • /
    • 2021
  • Purpose: In this study, various methods of deep learning-based automatic damage analysis technology were reviewed based on images taken through Unmanned Aerial Vehicle to more efficiently and reliably inspect the exterior inspection and inspection of railway bridges using Unmanned Aerial Vehicle. Method: A deep learning analysis model was created by defining damage items based on the acquired images and extracting deep learning data. In addition, the model that learned the damage images for cracks, concrete and paint scaling·spalling, leakage, and Reinforcement exposure among damage of railway bridges was applied and tested with the results of automatic damage analysis. Result: As a result of the analysis, a method with an average detection recall of 95% or more was confirmed. This analysis technology enables more objective and accurate damage detection compared to the existing visual inspection results. Conclusion: through the developed technology in this study, it is expected that it will be possible to analysis more accurate results, shorter time and reduce costs by using the automatic damage analysis technology using Unmanned Aerial Vehicle in railway maintenance.

A Study on the Efficiency of Deep Learning on Embedded Boards (임베디드 보드에서의 딥러닝 사용 효율성 분석 연구)

  • Choi, Donggyu;Lee, Dongjin;Lee, Jiwon;Son, Seongho;Kim, Minyoung;Jang, Jong-wook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.668-673
    • /
    • 2021
  • As the fourth industrial revolution begins in earnest, related technologies are becoming a hot topic. Hardware development is accelerating to make the most of technologies such as high-speed wireless communication, and related companies are growing rapidly. Artificial intelligence often uses desktops in general for related research, but it is mainly used for the learning process of deep learning and often transplants the generated models into devices to be used by including them in programs, etc. However, it is difficult to produce results for devices that do not have sufficient power or performance due to excessive learning or lack of power due to the use of models built to the desktop's performance. In this paper, we analyze efficiency using boards with several Neural Process Units on sale before developing the performance of deep learning to match embedded boards, and deep learning accelerators that can increase deep learning performance with USB, and present a simple development direction possible using embedded boards.

A Study on the Control of Lighting Color Temperature by Emotional Perception of Pregnant Women (임산부의 감정 인식에 따른 조명 색온도 제어 연구)

  • Son, Seongho;Choi, Donggyu;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.123-125
    • /
    • 2021
  • Pregnant women's psychological health affects the health of the fetus. Therefore, health care for pregnant women is essential for a healthy fetus. One of the symptoms of pregnancy among many pregnant women is the depression of emotional ups and downs. One way to relieve this depression is to use light therapy and color therapy by using lighting. Adjust the color temperature of the light so that it affects the emotions through color. For example, ceiling lights in car dealerships are set up like a sun-light, or low color temperature are used to create a comfortable mood in facilities like spas. In this paper, we use image sensors to identify the psychological state and change the color temperature of the lighting in real time. The study was conducted to relieve postpartum depression by using the psychological effects of pregnant women with easily purchased lighting devices.

  • PDF