• Title/Summary/Keyword: deep-learning

Search Result 5,679, Processing Time 0.225 seconds

SOME/IP 에서의 시퀀셜 모델 기반 침입탐지 시스템 (Intrusion Detection System Based on Sequential Model in SOME/IP)

  • 강연재;피대권;김해린;이상호;김휘강
    • 정보보호학회논문지
    • /
    • 제32권6호
    • /
    • pp.1171-1181
    • /
    • 2022
  • 전방충돌 방지 보조 또는 지능형 주행 제어 기능 등이 현대의 자동차에 탑재됨에 따라 차에서 교환되는 데이터 양이 급증하고 있다. 따라서, 기존의 CAN 통신으로는 전송속도의 한계가 있어 넓은 대역폭과 양방향 통신을 지원하는 오토모티브 이더넷, 특히 SOME/IP가 널리 채택되고 있다. SOME/IP는 다양한 자동차 운영체제와 호환되는 표준 프로토콜로 차내 구성 요소간의 연결성을 높여준다. 하지만 SOME/IP 자체에는 암호화나 인증이 구현되어 있지 않아 악의적인 패킷 주입, 프로토콜 위반과 같은 공격에 취약한 문제가 있다. 본 논문에서는, 이러한 공격들을 효과적으로 탐지하기 위해 SOME/IP에서 딥러닝 기반의 침입탐지 시스템을 제안하였다. 제안된 침입탐지시스템의 성능을 6가지 공격 패턴을 활용하여 테스트 하였고 정확도 94%, 6가지 공격의 평균 F1-score은 0.94로 높은 성능을 달성할 수 있었다.

얼굴 인식 모델에 대한 질의 효율적인 블랙박스 적대적 공격 방법 (Query-Efficient Black-Box Adversarial Attack Methods on Face Recognition Model)

  • 서성관;손배훈;윤주범
    • 정보보호학회논문지
    • /
    • 제32권6호
    • /
    • pp.1081-1090
    • /
    • 2022
  • 얼굴 인식 모델은 스마트폰의 신원 인식에 활용되는 등 많은 사용자에게 편의를 제공하고 있다. 이에 따라 DNN 모델의 보안성 검토가 중요해지고 있는데 DNN 모델의 잘 알려진 취약점으로 적대적 공격이 존재한다. 적대적 공격은 현재 DNN 모델의 인식 결과만을 이용하여 공격을 수행하는 의사결정 공격기법까지 발전하였다. 그러나 기존 의사결정 기반 공격기법[14]은 적대적 예제 생성 시 많은 질의 수가 필요한 문제점이 있다. 특히, 기울기를 근사하는데 많은 질의 수가 소모되는데 정확한 기울기를 구할 수 없는 문제가 존재한다. 따라서 본 논문에서는 기존 의사결정 공격기법의 기울기를 근사할 때 소모되는 질의 수 낭비를 막기 위해서 직교 공간 샘플링과 차원 축소 샘플링 방법을 제안한다. 실험 결과 섭동의 크기가 L2 distance 기준 약 2.4 적은 적대적 예제를 생성할 수 있었고 공격 성공률의 경우 약 14% 향상할 수 있었다. 실험 결과를 통해 본 논문에서 제안한 적대적 예제 생성방법의 같은 질의 수 대비 공격 성능이 우수함을 입증한다.

GPUDirect RDMA 기반의 고성능 암호 분석 시스템 설계 및 구현 (Design and Implementation of High-Performance Cryptanalysis System Based on GPUDirect RDMA)

  • 이석민;신영주
    • 정보보호학회논문지
    • /
    • 제32권6호
    • /
    • pp.1127-1137
    • /
    • 2022
  • GPU의 병렬 연산을 활용한 암호 분석 및 해독 기술은 암호 분석 시스템의 연산 시간을 단축하는 방향으로 연구되었다. 해당 연구들은 하나의 GPU에서 암호 분석 연산의 속도를 향상시키기 위해 코드를 최적화하거나 또는 단순히 GPU의 수를 늘려 병렬 연산을 강화하는 것에 집중되어 있다. 하지만 다량의 GPU를 데이터 전송에 대한 최적화 없이 사용하는 것은 하나의 GPU를 사용하는 것보다 더 긴 데이터 전송 지연 문제를 발생시키고, 암호 분석 시스템의 전체적인 연산 시간 증가를 야기한다. 이에, 본 논문은 딥러닝 또는 HPC 연구 분야의 GPU Clustering 환경에서 고성능 데이터 처리를 위해 활용되는 GPUDirect RDMA 및 관련 제반 기술들을 조사 및 분석한다. 그리고 해당 기술들을 활용한 고성능 암호 분석 시스템 설계 방법들을 제안한다. 더 나아가, 해당 설계를 기반으로 Password Cracking, GPU Reduction을 활용한 암호 분석 시스템 구현 방법에 대해 제시한다. 최종적으로, GPUDirect RDMA 기술 적용으로 구현된 암호 분석 시스템에 대해서 암호 분석 작업 성능 향상의 실증을 통해 제안한 시스템에 대한 기대효과를 제시한다.

한글 조합성에 기반한 최소 글자를 사용하는 한글 폰트 생성 모델 (Few-Shot Korean Font Generation based on Hangul Composability)

  • 박장경;;최재영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.473-482
    • /
    • 2021
  • 최근 딥러닝을 이용한 한글 생성 모델이 연구되고 있으나, 한글 폰트의 구조가 복잡하고 많은 폰트 데이터가 필요하여 상당한 시간과 자원을 필요로 할 뿐 아니라 스타일이 제대로 변환되지 않는 경우도 발생한다. 이러한 문제점을 보완하기 위하여, 본 논문에서는 한글의 초성, 중성, 종성의 구성요소를 기반으로 최소 글자를 사용하는 한글 폰트 생성 모델인 CKFont 모델을 제안한다. CKFont 모델은 GAN을 사용하는 한글 자동 생성 모델로, 28개의 글자와 초/중/종성 구성요소를 이용하여 다양한 스타일의 모든 한글을 생성할 수 있다. 구성요소로부터 로컬 스타일 정보를 획득함으로써, 글로벌 정보 획득보다 정확하고 정보 손실을 줄일 수 있다. 실험 결과 스타일을 자연스럽게 변환되지 못하는 경우를 감소시키고 폰트의 품질이 향상되었다. 한글 폰트를 생성하는 다른 모델들과 비교하여, 본 연구에서 제안하는 CKFont는 최소 글자를 사용하는 모델로, 모델의 구조가 간결하여 폰트를 생성하는 시간과 자원이 절약되는 효율적인 모델이다. 구성요소를 이용하는 방법은 다른 언어 폰트의 변환은 물론 다양한 이미지 변환과 합성에도 사용될 수 있다.

Lightweight multiple scale-patch dehazing network for real-world hazy image

  • Wang, Juan;Ding, Chang;Wu, Minghu;Liu, Yuanyuan;Chen, Guanhai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권12호
    • /
    • pp.4420-4438
    • /
    • 2021
  • Image dehazing is an ill-posed problem which is far from being solved. Traditional image dehazing methods often yield mediocre effects and possess substandard processing speed, while modern deep learning methods perform best only in certain datasets. The haze removal effect when processed by said methods is unsatisfactory, meaning the generalization performance fails to meet the requirements. Concurrently, due to the limited processing speed, most dehazing algorithms cannot be employed in the industry. To alleviate said problems, a lightweight fast dehazing network based on a multiple scale-patch framework (MSP) is proposed in the present paper. Firstly, the multi-scale structure is employed as the backbone network and the multi-patch structure as the supplementary network. Dehazing through a single network causes problems, such as loss of object details and color in some image areas, the multi-patch structure was employed for MSP as an information supplement. In the algorithm image processing module, the image is segmented up and down for processed separately. Secondly, MSP generates a clear dehazing effect and significant robustness when targeting real-world homogeneous and nonhomogeneous hazy maps and different datasets. Compared with existing dehazing methods, MSP demonstrated a fast inference speed and the feasibility of real-time processing. The overall size and model parameters of the entire dehazing model are 20.75M and 6.8M, and the processing time for the single image is 0.026s. Experiments on NTIRE 2018 and NTIRE 2020 demonstrate that MSP can achieve superior performance among the state-of-the-art methods, such as PSNR, SSIM, LPIPS, and individual subjective evaluation.

IoB 환경을 위한 헬스케어 서비스 모델 설계 (Designing a Healthcare Service Model for IoB Environments)

  • 정윤수
    • 디지털정책학회지
    • /
    • 1권1호
    • /
    • pp.15-20
    • /
    • 2022
  • 최근 헬스케어 분야는 다양한 산업 분야의 요구사항을 반영하여 서비스 품질을 향상시킬 수 있는 모델을 개발하려고 노력하고 있다. 본 논문에서는 헬스케어 서비스 향상을 위해서 5G 환경에서 사용자의 헬스케어 정보를 실시간으로 처리할 수 있는 행동인터넷(IoB, Internet of Behavior) 환경 모델을 제안한다. 제안 모델은 사용자의 헬스케어 정보를 딥러닝을 통해 분석한 후 건강 상태를 실시간으로 확인할 수 있도록 하는 것이 목적이다. 이때, 사용자의 생체 정보는 휴대용 의료 장비에 부착된 통신 장비를 통해 전달되며, 사용자 인증은 부착된 IoB 장치에 사전 입력된 정보를 통해 수행된다. 기존 IoT 헬스케어 서비스와의 차별점은 사용자의 습관 및 행동 패턴을 분석해서 디지털 데이터화 하는 점과 수집된 데이터를 기반으로 사용자의 헬스케어 서비스 향상을 위한 사용자 특정 행동을 유도할 수 있다는 점이다.

합성곱 신경망과 장단기 메모리를 이용한 사격음 분석 기법 (Shooting sound analysis using convolutional neural networks and long short-term memory)

  • 강세혁;조지웅
    • 한국음향학회지
    • /
    • 제41권3호
    • /
    • pp.312-318
    • /
    • 2022
  • 본 논문은 딥러닝기법 중 하나인 합성곱 신경망과 순환 신경망 중 하나인 장단기 메모리를 이용하여 사격시 발생하는 소음(이하 사격음)만으로 화기의 종류, 사격음 발생지점에 관한 정보(거리와 방향)을 추정하는 모델을 다루었다. 이를 위해 미국 법무부 산하 연구소의 지원하에 생성된 Gunshot Audio Forensic Dataset을 이용하였으며, 음향신호를 멜 스펙트로그램(Mel-Spectrogram)으로 변환한 후, 4종의 합성곱 신경망과 1종의 장단기 메모리 레이어로 구성된 딥러닝 모델에 학습 및 검증 데이터로 제공하였다. 제안 모델의 성능을 확인하기 위해 합성곱 신경망으로만 구성된 대조 모델과 비교·분석하였으며, 제안 모델의 정확도가 90 % 이상으로 대조모델보다 우수한 성능을 보였다.

블랙 박스 모델의 출력값을 이용한 AI 모델 종류 추론 공격 (Model Type Inference Attack Using Output of Black-Box AI Model)

  • 안윤수;최대선
    • 정보보호학회논문지
    • /
    • 제32권5호
    • /
    • pp.817-826
    • /
    • 2022
  • AI 기술이 여러 분야에 성공적으로 도입되는 추세이며, 서비스로 환경에 배포된 모델들은 지적 재산권과 데이터를 보호하기 위해 모델의 정보를 노출시키지 않는 블랙 박스 상태로 배포된다. 블랙 박스 환경에서 공격자들은 모델 출력을 이용해 학습에 쓰인 데이터나 파라미터를 훔치려고 한다. 본 논문은 딥러닝 모델을 대상으로 모델 종류에 대한 정보를 추론하는 공격이 없다는 점에서 착안하여, 모델의 구성 레이어 정보를 직접 알아내기 위해 모델의 종류를 추론하는 공격 방법을 제안한다. MNIST 데이터셋으로 학습된 ResNet, VGGNet, AlexNet과 간단한 컨볼루션 신경망 모델까지 네 가지 모델의 그레이 박스 및 블랙 박스 환경에서의 출력값을 이용해 모델의 종류가 추론될 수 있다는 것을 보였다. 또한 본 논문이 제안하는 방식인 대소 관계 피쳐를 딥러닝 모델에 함께 학습시킨 경우 블랙 박스 환경에서 약 83%의 정확도로 모델의 종류를 추론했으며, 그 결과를 통해 공격자에게 확률 벡터가 아닌 제한된 정보만 제공되는 상황에서도 모델 종류가 추론될 수 있음을 보였다.

사물인터넷 기기 고장 진단을 위한 그래프 신경망 모델 기반 분류 방법 (Classification Method based on Graph Neural Network Model for Diagnosing IoT Device Fault)

  • 김진영;선준호;윤성훈
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.9-14
    • /
    • 2022
  • 각종 기기들이 연결되는 사물인터넷(internet of things) 시스템에서 중요한 부품의 고장은 경제적, 인명의 손실을 야기할 수 있다. 시스템 내에서 발생하는 고장으로 인한 손실을 줄이기 위해 고장 검진 기술이 IoT에서 중요한 기술로써 여겨지고 있다. 본 논문에서는 그래프 신경망 기반 방법을 사용하여 시스템 내의 설비에서 취득된 진동 데이터의 특징을 추출하여 고장 여부를 판단하고 유형을 분류하는 방법을 제안한다. 딥러닝 모델의 학습을 위해, CWRU(case western reserve university)에서 취득된 고장 데이터 셋을 입력 데이터로 사용한다. 제안하는 모델의 분류 정확도 성능을 확인하기 위해 기존 제안된 합성곱 신경망(convolutional neural networks) 기반 분류 모델과 제안된 모델을 비교한다. 시뮬레이션 결과, 제안된 모델은 불균등하게 나누어진 데이터에서 기존 모델보다 분류 정확도를 약 5% 향상 시킬 수 있는 것을 확인하였다. 이후 연구로, 제안하는 모델을 경량화해서 분류 속도를 개선할 예정이다.

동영상 물체 분할을 위한 효율적인 메모리 업데이트 모듈 (Efficient Memory Update Module for Video Object Segmentation)

  • 조준호;조남익
    • 방송공학회논문지
    • /
    • 제27권4호
    • /
    • pp.561-568
    • /
    • 2022
  • 최근 대부분의 딥러닝 기반 동영상 물체 분할 방법들에서는 외부 메모리에 과거 예측 정보를 저장한 상태에서 알고리즘 수행을 하며, 일반적으로 메모리에 많은 과거 정보를 저장할수록 관심 물체의 다양한 변화에 대한 근거들이 축적되어 좋은 결과를 얻을 수 있다. 하지만 하드웨어의 제한으로 인해 메모리에 모든 정보를 저장할 수 없어 이에 따른 성능 하락이 발생한다. 본 논문에서는 저장되지 않는 정보들을 기존의 메모리에 추가적인 메모리 할당 없이 저장하는 방법을 제안한다. 구체적으로, 기존 메모리와 새로 저장할 정보들과의 어텐션 점수를 계산한 후에, 각 점수에 따라 해당 메모리에 새 정보를 더한다. 이 방법으로 물체 형체의 변화에 대한 정보가 반영되어 물체 변화에 대한 강인성이 높아져서 분할 성능이 유지됨을 확인할 수 있었다. 또한, 메모리의 누적 매칭 횟수에 따라 적응적으로 업데이트 비율을 결정하여, 업데이트가 많이 되는 샘플들은 과거의 정보를 더 기억하여 신뢰성 있는 정보를 유지할 수 있게 하였다.