• Title/Summary/Keyword: deep-learning

Search Result 5,679, Processing Time 0.031 seconds

Mapless Navigation with Distributional Reinforcement Learning (분포형 강화학습을 활용한 맵리스 네비게이션)

  • Van Manh Tran;Gon-Woo Kim
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.92-97
    • /
    • 2024
  • This paper provides a study of distributional perspective on reinforcement learning for application in mobile robot navigation. Mapless navigation algorithms based on deep reinforcement learning are proven to promising performance and high applicability. The trial-and-error simulations in virtual environments are encouraged to implement autonomous navigation due to expensive real-life interactions. Nevertheless, applying the deep reinforcement learning model in real tasks is challenging due to dissimilar data collection between virtual simulation and the physical world, leading to high-risk manners and high collision rate. In this paper, we present distributional reinforcement learning architecture for mapless navigation of mobile robot that adapt the uncertainty of environmental change. The experimental results indicate the superior performance of distributional soft actor critic compared to conventional methods.

Enhancing Malware Detection with TabNetClassifier: A SMOTE-based Approach

  • Rahimov Faridun;Eul Gyu Im
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.294-297
    • /
    • 2024
  • Malware detection has become increasingly critical with the proliferation of end devices. To improve detection rates and efficiency, the research focus in malware detection has shifted towards leveraging machine learning and deep learning approaches. This shift is particularly relevant in the context of the widespread adoption of end devices, including smartphones, Internet of Things devices, and personal computers. Machine learning techniques are employed to train models on extensive datasets and evaluate various features, while deep learning algorithms have been extensively utilized to achieve these objectives. In this research, we introduce TabNet, a novel architecture designed for deep learning with tabular data, specifically tailored for enhancing malware detection techniques. Furthermore, the Synthetic Minority Over-Sampling Technique is utilized in this work to counteract the challenges posed by imbalanced datasets in machine learning. SMOTE efficiently balances class distributions, thereby improving model performance and classification accuracy. Our study demonstrates that SMOTE can effectively neutralize class imbalance bias, resulting in more dependable and precise machine learning models.

Meta Learning based Object Tracking Technology: A Survey

  • Ji-Won Baek;Kyungyong Chung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2067-2081
    • /
    • 2024
  • Recently, image analysis research has been actively conducted due to the accumulation of big image data and the development of deep learning. Image analytics research has different characteristics from other data such as data size, real-time, image quality diversity, structural complexity, and security issues. In addition, a large amount of data is required to effectively analyze images with deep-learning models. However, in many fields, the data that can be collected is limited, so there is a need for meta learning based image analysis technology that can effectively train models with a small amount of data. This paper presents a comprehensive survey of meta-learning-based object-tracking techniques. This approach comprehensively explores object tracking methods and research that can achieve high performance in data-limited situations, including key challenges and future directions. It provides useful information for researchers in the field and can provide insights into future research directions.

Analysis of deep learning-based deep clustering method (딥러닝 기반의 딥 클러스터링 방법에 대한 분석)

  • Hyun Kwon;Jun Lee
    • Convergence Security Journal
    • /
    • v.23 no.4
    • /
    • pp.61-70
    • /
    • 2023
  • Clustering is an unsupervised learning method that involves grouping data based on features such as distance metrics, using data without known labels or ground truth values. This method has the advantage of being applicable to various types of data, including images, text, and audio, without the need for labeling. Traditional clustering techniques involve applying dimensionality reduction methods or extracting specific features to perform clustering. However, with the advancement of deep learning models, research on deep clustering techniques using techniques such as autoencoders and generative adversarial networks, which represent input data as latent vectors, has emerged. In this study, we propose a deep clustering technique based on deep learning. In this approach, we use an autoencoder to transform the input data into latent vectors, and then construct a vector space according to the cluster structure and perform k-means clustering. We conducted experiments using the MNIST and Fashion-MNIST datasets in the PyTorch machine learning library as the experimental environment. The model used is a convolutional neural network-based autoencoder model. The experimental results show an accuracy of 89.42% for MNIST and 56.64% for Fashion-MNIST when k is set to 10.

Development of deep learning structure for complex microbial incubator applying deep learning prediction result information (딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.116-121
    • /
    • 2023
  • In this paper, we develop a deep learning structure for a complex microbial incubator that applies deep learning prediction result information. The proposed complex microbial incubator consists of pre-processing of complex microbial data, conversion of complex microbial data structure, design of deep learning network, learning of the designed deep learning network, and GUI development applied to the prototype. In the complex microbial data preprocessing, one-hot encoding is performed on the amount of molasses, nutrients, plant extract, salt, etc. required for microbial culture, and the maximum-minimum normalization method for the pH concentration measured as a result of the culture and the number of microbial cells to preprocess the data. In the complex microbial data structure conversion, the preprocessed data is converted into a graph structure by connecting the water temperature and the number of microbial cells, and then expressed as an adjacency matrix and attribute information to be used as input data for a deep learning network. In deep learning network design, complex microbial data is learned by designing a graph convolutional network specialized for graph structures. The designed deep learning network uses a cosine loss function to proceed with learning in the direction of minimizing the error that occurs during learning. GUI development applied to the prototype shows the target pH concentration (3.8 or less) and the number of cells (108 or more) of complex microorganisms in an order suitable for culturing according to the water temperature selected by the user. In order to evaluate the performance of the proposed microbial incubator, the results of experiments conducted by authorized testing institutes showed that the average pH was 3.7 and the number of cells of complex microorganisms was 1.7 × 108. Therefore, the effectiveness of the deep learning structure for the complex microbial incubator applying the deep learning prediction result information proposed in this paper was proven.

A Study on the Development of DGA based on Deep Learning (Deep Learning 기반의 DGA 개발에 대한 연구)

  • Park, Jae-Gyun;Choi, Eun-Soo;Kim, Byung-June;Zhang, Pan
    • Korean Journal of Artificial Intelligence
    • /
    • v.5 no.1
    • /
    • pp.18-28
    • /
    • 2017
  • Recently, there are many companies that use systems based on artificial intelligence. The accuracy of artificial intelligence depends on the amount of learning data and the appropriate algorithm. However, it is not easy to obtain learning data with a large number of entity. Less data set have large generalization errors due to overfitting. In order to minimize this generalization error, this study proposed DGA which can expect relatively high accuracy even though data with a less data set is applied to machine learning based genetic algorithm to deep learning based dropout. The idea of this paper is to determine the active state of the nodes. Using Gradient about loss function, A new fitness function is defined. Proposed Algorithm DGA is supplementing stochastic inconsistency about Dropout. Also DGA solved problem by the complexity of the fitness function and expression range of the model about Genetic Algorithm As a result of experiments using MNIST data proposed algorithm accuracy is 75.3%. Using only Dropout algorithm accuracy is 41.4%. It is shown that DGA is better than using only dropout.

Impact parameter prediction of a simulated metallic loose part using convolutional neural network

  • Moon, Seongin;Han, Seongjin;Kang, To;Han, Soonwoo;Kim, Kyungmo;Yu, Yongkyun;Eom, Joseph
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1199-1209
    • /
    • 2021
  • The detection of unexpected loose parts in the primary coolant system in a nuclear power plant remains an extremely important issue. It is essential to develop a methodology for the localization and mass estimation of loose parts owing to the high prediction error of conventional methods. An effective approach is presented for the localization and mass estimation of a loose part using machine-learning and deep-learning algorithms. First, a methodology was developed to estimate both the impact location and the mass of a loose part at the same times in a real structure in which geometric changes exist. Second, an impact database was constructed through a series of impact finite-element analyses (FEAs). Then, impact parameter prediction modes were generated for localization and mass estimation of a simulated metallic loose part using machine-learning algorithms (artificial neural network, Gaussian process, and support vector machine) and a deep-learning algorithm (convolutional neural network). The usefulness of the methodology was validated through blind tests, and the noise effect of the training data was also investigated. The high performance obtained in this study shows that the proposed methodology using an FEA-based database and deep learning is useful for localization and mass estimation of loose parts on site.

Development of Semi-Active Control Algorithm Using Deep Q-Network (Deep Q-Network를 이용한 준능동 제어알고리즘 개발)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.1
    • /
    • pp.79-86
    • /
    • 2021
  • Control performance of a smart tuned mass damper (TMD) mainly depends on control algorithms. A lot of control strategies have been proposed for semi-active control devices. Recently, machine learning begins to be applied to development of vibration control algorithm. In this study, a reinforcement learning among machine learning techniques was employed to develop a semi-active control algorithm for a smart TMD. The smart TMD was composed of magnetorheological damper in this study. For this purpose, an 11-story building structure with a smart TMD was selected to construct a reinforcement learning environment. A time history analysis of the example structure subject to earthquake excitation was conducted in the reinforcement learning procedure. Deep Q-network (DQN) among various reinforcement learning algorithms was used to make a learning agent. The command voltage sent to the MR damper is determined by the action produced by the DQN. Parametric studies on hyper-parameters of DQN were performed by numerical simulations. After appropriate training iteration of the DQN model with proper hyper-parameters, the DQN model for control of seismic responses of the example structure with smart TMD was developed. The developed DQN model can effectively control smart TMD to reduce seismic responses of the example structure.

Implementation of YOLOv5-based Forest Fire Smoke Monitoring Model with Increased Recognition of Unstructured Objects by Increasing Self-learning data

  • Gun-wo, Do;Minyoung, Kim;Si-woong, Jang
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.536-546
    • /
    • 2022
  • A society will lose a lot of something in this field when the forest fire broke out. If a forest fire can be detected in advance, damage caused by the spread of forest fires can be prevented early. So, we studied how to detect forest fires using CCTV currently installed. In this paper, we present a deep learning-based model through efficient image data construction for monitoring forest fire smoke, which is unstructured data, based on the deep learning model YOLOv5. Through this study, we conducted a study to accurately detect forest fire smoke, one of the amorphous objects of various forms, in YOLOv5. In this paper, we introduce a method of self-learning by producing insufficient data on its own to increase accuracy for unstructured object recognition. The method presented in this paper constructs a dataset with a fixed labelling position for images containing objects that can be extracted from the original image, through the original image and a model that learned from it. In addition, by training the deep learning model, the performance(mAP) was improved, and the errors occurred by detecting objects other than the learning object were reduced, compared to the model in which only the original image was learned.

Research on Forecasting Framework for System Marginal Price based on Deep Recurrent Neural Networks and Statistical Analysis Models

  • Kim, Taehyun;Lee, Yoonjae;Hwangbo, Soonho
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.138-146
    • /
    • 2022
  • Electricity has become a factor that dramatically affects the market economy. The day-ahead system marginal price determines electricity prices, and system marginal price forecasting is critical in maintaining energy management systems. There have been several studies using mathematics and machine learning models to forecast the system marginal price, but few studies have been conducted to develop, compare, and analyze various machine learning and deep learning models based on a data-driven framework. Therefore, in this study, different machine learning algorithms (i.e., autoregressive-based models such as the autoregressive integrated moving average model) and deep learning networks (i.e., recurrent neural network-based models such as the long short-term memory and gated recurrent unit model) are considered and integrated evaluation metrics including a forecasting test and information criteria are proposed to discern the optimal forecasting model. A case study of South Korea using long-term time-series system marginal price data from 2016 to 2021 was applied to the developed framework. The results of the study indicate that the autoregressive integrated moving average model (R-squared score: 0.97) and the gated recurrent unit model (R-squared score: 0.94) are appropriate for system marginal price forecasting. This study is expected to contribute significantly to energy management systems and the suggested framework can be explicitly applied for renewable energy networks.