• Title/Summary/Keyword: deep-learning

Search Result 5,508, Processing Time 0.031 seconds

Voice Recognition-Based on Adaptive MFCC and Deep Learning for Embedded Systems (임베디드 시스템에서 사용 가능한 적응형 MFCC 와 Deep Learning 기반의 음성인식)

  • Bae, Hyun Soo;Lee, Ho Jin;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.797-802
    • /
    • 2016
  • This paper proposes a noble voice recognition method based on an adaptive MFCC and deep learning for embedded systems. To enhance the recognition ratio of the proposed voice recognizer, ambient noise mixed into the voice signal has to be eliminated. However, noise filtering processes, which may damage voice data, diminishes the recognition ratio. In this paper, a filter has been designed for the frequency range within a voice signal, and imposed weights are used to reduce data deterioration. In addition, a deep learning algorithm, which does not require a database in the recognition algorithm, has been adapted for embedded systems, which inherently require small amounts of memory. The experimental results suggest that the proposed deep learning algorithm and HMM voice recognizer, utilizing the proposed adaptive MFCC algorithm, perform better than conventional MFCC algorithms in its recognition ratio within a noisy environment.

De-noising in Power Line Communication Using Noise Modeling Based on Deep Learning (딥 러닝 기반의 잡음 모델링을 이용한 전력선 통신에서의 잡음 제거)

  • Sun, Young-Ghyu;Hwang, Yu-Min;Sim, Issac;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.55-60
    • /
    • 2018
  • This paper shows the initial results of a study applying deep learning technology in power line communication. In this paper, we propose a system that effectively removes noise by applying a deep learning technique to eliminate noise, which is a cause of reduced power line communication performance, by adding a deep learning model at the receive part. To train the deep learning model, it is necessary to store the data. Therefore, it is assumed that the existing data is stored, and the proposed system is simulated. we compare the theoretical result of the additive white Gaussian noise channel with the bit error rate and confirm that the proposed system model improves the communication performance by removing the noise.

Accurate Human Localization for Automatic Labelling of Human from Fisheye Images

  • Than, Van Pha;Nguyen, Thanh Binh;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.769-781
    • /
    • 2017
  • Deep learning networks like Convolutional Neural Networks (CNNs) show successful performances in many computer vision applications such as image classification, object detection, and so on. For implementation of deep learning networks in embedded system with limited processing power and memory, deep learning network may need to be simplified. However, simplified deep learning network cannot learn every possible scene. One realistic strategy for embedded deep learning network is to construct a simplified deep learning network model optimized for the scene images of the installation place. Then, automatic training will be necessitated for commercialization. In this paper, as an intermediate step toward automatic training under fisheye camera environments, we study more precise human localization in fisheye images, and propose an accurate human localization method, Automatic Ground-Truth Labelling Method (AGTLM). AGTLM first localizes candidate human object bounding boxes by utilizing GoogLeNet-LSTM approach, and after reassurance process by GoogLeNet-based CNN network, finally refines them more correctly and precisely(tightly) by applying saliency object detection technique. The performance improvement of the proposed human localization method, AGTLM with respect to accuracy and tightness is shown through several experiments.

An overview of deep learning in the field of dentistry

  • Hwang, Jae-Joon;Jung, Yun-Hoa;Cho, Bong-Hae;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Purpose: Artificial intelligence (AI), represented by deep learning, can be used for real-life problems and is applied across all sectors of society including medical and dental field. The purpose of this study is to review articles about deep learning that were applied to the field of oral and maxillofacial radiology. Materials and Methods: A systematic review was performed using Pubmed, Scopus, and IEEE explore databases to identify articles using deep learning in English literature. The variables from 25 articles included network architecture, number of training data, evaluation result, pros and cons, study object and imaging modality. Results: Convolutional Neural network (CNN) was used as a main network component. The number of published paper and training datasets tended to increase, dealing with various field of dentistry. Conclusion: Dental public datasets need to be constructed and data standardization is necessary for clinical application of deep learning in dental field.

Coreset Construction for Character Recognition of PCB Components Based on Deep Learning (딥러닝 기반의 PCB 부품 문자인식을 위한 코어 셋 구성)

  • Gang, Su Myung;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.382-395
    • /
    • 2021
  • In this study, character recognition using deep learning is performed among the various defects in the PCB, the purpose of which is to check whether the printed characters are printed correctly on top of components, or the incorrect parts are attached. Generally, character recognition may be perceived as not a difficult problem when considering MNIST, but the printed letters on the PCB component data are difficult to collect, and have very high redundancy. So if a deep learning model is trained with original data without any preprocessing, it can lead to over fitting problems. Therefore, this study aims to reduce the redundancy to the smallest dataset that can represent large amounts of data collected in limited production sites, and to create datasets through data enhancement to train a flexible deep learning model can be used in various production sites. Moreover, ResNet model verifies to determine which combination of datasets is the most effective. This study discusses how to reduce and augment data that is constantly occurring in real PCB production lines, and discusses how to select coresets to learn and apply deep learning models in real sites.

Automatic detection of icing wind turbine using deep learning method

  • Hacıefendioglu, Kemal;Basaga, Hasan Basri;Ayas, Selen;Karimi, Mohammad Tordi
    • Wind and Structures
    • /
    • v.34 no.6
    • /
    • pp.511-523
    • /
    • 2022
  • Detecting the icing on wind turbine blades built-in cold regions with conventional methods is always a very laborious, expensive and very difficult task. Regarding this issue, the use of smart systems has recently come to the agenda. It is quite possible to eliminate this issue by using the deep learning method, which is one of these methods. In this study, an application has been implemented that can detect icing on wind turbine blades images with visualization techniques based on deep learning using images. Pre-trained models of Resnet-50, VGG-16, VGG-19 and Inception-V3, which are well-known deep learning approaches, are used to classify objects automatically. Grad-CAM, Grad-CAM++, and Score-CAM visualization techniques were considered depending on the deep learning methods used to predict the location of icing regions on the wind turbine blades accurately. It was clearly shown that the best visualization technique for localization is Score-CAM. Finally, visualization performance analyses in various cases which are close-up and remote photos of a wind turbine, density of icing and light were carried out using Score-CAM for Resnet-50. As a result, it is understood that these methods can detect icing occurring on the wind turbine with acceptable high accuracy.

Accelerating Magnetic Resonance Fingerprinting Using Hybrid Deep Learning and Iterative Reconstruction

  • Cao, Peng;Cui, Di;Ming, Yanzhen;Vardhanabhuti, Varut;Lee, Elaine;Hui, Edward
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.293-299
    • /
    • 2021
  • Purpose: To accelerate magnetic resonance fingerprinting (MRF) by developing a flexible deep learning reconstruction method. Materials and Methods: Synthetic data were used to train a deep learning model. The trained model was then applied to MRF for different organs and diseases. Iterative reconstruction was performed outside the deep learning model, allowing a changeable encoding matrix, i.e., with flexibility of choice for image resolution, radiofrequency coil, k-space trajectory, and undersampling mask. In vivo experiments were performed on normal brain and prostate cancer volunteers to demonstrate the model performance and generalizability. Results: In 400-dynamics brain MRF, direct nonuniform Fourier transform caused a slight increase of random fluctuations on the T2 map. These fluctuations were reduced with the proposed method. In prostate MRF, the proposed method suppressed fluctuations on both T1 and T2 maps. Conclusion: The deep learning and iterative MRF reconstruction method described in this study was flexible with different acquisition settings such as radiofrequency coils. It is generalizable for different in vivo applications.

Deep Learning-based Product Recommendation Model for Influencer Marketing (인플루언서를 위한 딥러닝 기반의 제품 추천모델 개발)

  • Song, Hee Seok;Kim, Jae Kyung
    • Journal of Information Technology Applications and Management
    • /
    • v.29 no.3
    • /
    • pp.43-55
    • /
    • 2022
  • In this study, with the goal of developing a deep learning-based product recommendation model for effective matching of influencers and products, a deep learning model with a collaborative filtering model combined with generalized matrix decomposition(GMF), a collaborative filtering model based on multi-layer perceptron (MLP), and neural collaborative filtering and generalized matrix Factorization (NeuMF), a hybrid model combining GMP and MLP was developed and tested. In particular, we utilize one-class problem free boosting (OCF-B) method to solve the one-class problem that occurs when training is performed only on positive cases using implicit feedback in the deep learning-based collaborative filtering recommendation model. In relation to model selection based on overall experimental results, the MLP model showed highest performance with weighted average precision, weighted average recall, and f1 score were 0.85 in the model (n=3,000, term=15). This study is meaningful in practice as it attempted to commercialize a deep learning-based recommendation system where influencer's promotion data is being accumulated, pactical personalized recommendation service is not yet commercially applied yet.

Deep Learning Based Radiographic Classification of Morphology and Severity of Peri-implantitis Bone Defects: A Preliminary Pilot Study

  • Jae-Hong Lee;Jeong-Ho Yun
    • Journal of Korean Dental Science
    • /
    • v.16 no.2
    • /
    • pp.156-163
    • /
    • 2023
  • Purpose: The aim of this study was to evaluate the feasibility of deep learning techniques to classify the morphology and severity of peri-implantitis bone defects based on periapical radiographs. Materials and Methods: Based on a pre-trained and fine-tuned ResNet-50 deep learning algorithm, the morphology and severity of peri-implantitis bone defects on periapical radiographs were classified into six groups (class I/II and slight/moderate/severe). Accuracy, precision, recall, and F1 scores were calculated to measure accuracy. Result: A total of 971 dental images were included in this study. Deep-learning-based classification achieved an accuracy of 86.0% with precision, recall, and F1 score values of 84.45%, 81.22%, and 82.80%, respectively. Class II and moderate groups had the highest F1 scores (92.23%), whereas class I and severe groups had the lowest F1 scores (69.33%). Conclusion: The artificial intelligence-based deep learning technique is promising for classifying the morphology and severity of peri-implantitis. However, further studies are required to validate their feasibility in clinical practice.

A Deep Learning Approach for Intrusion Detection

  • Roua Dhahbi;Farah Jemili
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.89-96
    • /
    • 2023
  • Intrusion detection has been widely studied in both industry and academia, but cybersecurity analysts always want more accuracy and global threat analysis to secure their systems in cyberspace. Big data represent the great challenge of intrusion detection systems, making it hard to monitor and analyze this large volume of data using traditional techniques. Recently, deep learning has been emerged as a new approach which enables the use of Big Data with a low training time and high accuracy rate. In this paper, we propose an approach of an IDS based on cloud computing and the integration of big data and deep learning techniques to detect different attacks as early as possible. To demonstrate the efficacy of this system, we implement the proposed system within Microsoft Azure Cloud, as it provides both processing power and storage capabilities, using a convolutional neural network (CNN-IDS) with the distributed computing environment Apache Spark, integrated with Keras Deep Learning Library. We study the performance of the model in two categories of classification (binary and multiclass) using CSE-CIC-IDS2018 dataset. Our system showed a great performance due to the integration of deep learning technique and Apache Spark engine.