• Title/Summary/Keyword: deep-learning

Search Result 5,680, Processing Time 0.027 seconds

The Study for Type of Mask Wearing Dataset for Deep learning and Detection Model (딥러닝을 위한 마스크 착용 유형별 데이터셋 구축 및 검출 모델에 관한 연구)

  • Hwang, Ho Seong;Kim, Dong heon;Kim, Ho Chul
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.131-135
    • /
    • 2022
  • Due to COVID-19, Correct method of wearing mask is important to prevent COVID-19 and the other respiratory tract infections. And the deep learning technology in the image processing has been developed. The purpose of this study is to create the type of mask wearing dataset for deep learning models and select the deep learning model to detect the wearing mask correctly. The Image dataset is the 2,296 images acquired using a web crawler. Deep learning classification models provided by tensorflow are used to validate the dataset. And Object detection deep learning model YOLOs are used to select the detection deep learning model to detect the wearing mask correctly. In this process, this paper proposes to validate the type of mask wearing datasets and YOLOv5 is the effective model to detect the type of mask wearing. The experimental results show that reliable dataset is acquired and the YOLOv5 model effectively recognize type of mask wearing.

Development of an Optimized Deep Learning Model for Medical Imaging (의료 영상에 최적화된 딥러닝 모델의 개발)

  • Young Jae Kim;Kwang Gi Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.6
    • /
    • pp.1274-1289
    • /
    • 2020
  • Deep learning has recently become one of the most actively researched technologies in the field of medical imaging. The availability of sufficient data and the latest advances in algorithms are important factors that influence the development of deep learning models. However, several other factors should be considered in developing an optimal generalized deep learning model. All the steps, including data collection, labeling, and pre-processing and model training, validation, and complexity can affect the performance of deep learning models. Therefore, appropriate optimization methods should be considered for each step during the development of a deep learning model. In this review, we discuss the important factors to be considered for the optimal development of deep learning models.

Design and Verification of Spacecraft Pose Estimation Algorithm using Deep Learning

  • Shinhye Moon;Sang-Young Park;Seunggwon Jeon;Dae-Eun Kang
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.61-78
    • /
    • 2024
  • This study developed a real-time spacecraft pose estimation algorithm that combined a deep learning model and the least-squares method. Pose estimation in space is crucial for automatic rendezvous docking and inter-spacecraft communication. Owing to the difficulty in training deep learning models in space, we showed that actual experimental results could be predicted through software simulations on the ground. We integrated deep learning with nonlinear least squares (NLS) to predict the pose from a single spacecraft image in real time. We constructed a virtual environment capable of mass-producing synthetic images to train a deep learning model. This study proposed a method for training a deep learning model using pure synthetic images. Further, a visual-based real-time estimation system suitable for use in a flight testbed was constructed. Consequently, it was verified that the hardware experimental results could be predicted from software simulations with the same environment and relative distance. This study showed that a deep learning model trained using only synthetic images can be sufficiently applied to real images. Thus, this study proposed a real-time pose estimation software for automatic docking and demonstrated that the method constructed with only synthetic data was applicable in space.

DeepBlock: Web-based Deep Learning Education Platform (딥블록: 웹 기반 딥러닝 교육용 플랫폼)

  • Cho, Jinsung;Kim, Geunmo;Go, Hyunmin;Kim, Sungmin;Kim, Jisub;Kim, Bongjae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 2021
  • Recently, researches and projects of companies based on artificial intelligence have been actively carried out. Various services and systems are being grafted with artificial intelligence technology. They become more intelligent. Accordingly, interest in deep learning, one of the techniques of artificial intelligence, and people who want to learn it have increased. In order to learn deep learning, deep learning theory with a lot of knowledge such as computer programming and mathematics is required. That is a high barrier to entry to beginners. Therefore, in this study, we designed and implemented a web-based deep learning platform called DeepBlock, which enables beginners to implement basic models of deep learning such as DNN and CNN without considering programming and mathematics. The proposed DeepBlock can be used for the education of students or beginners interested in deep learning.

Damage Detection in Truss Structures Using Deep Learning Techniques (딥러닝 기술을 이용한 트러스 구조물의 손상 탐지)

  • Lee, Seunghye;Lee, Kihak;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.93-100
    • /
    • 2019
  • There has been considerable recent interest in deep learning techniques for structural analysis and design. However, despite newer algorithms and more precise methods have been developed in the field of computer science, the recent effective deep learning techniques have not been applied to the damage detection topics. In this study, we have explored the structural damage detection method of truss structures using the state-of-the-art deep learning techniques. The deep neural networks are used to train knowledge of the patterns in the response of the undamaged and the damaged structures. A 31-bar planar truss are considered to show the capabilities of the deep learning techniques for identifying the single or multiple-structural damage. The frequency responses and the elasticity moduli of individual elements are used as input and output datasets, respectively. In all considered cases, the neural network can assess damage conditions with very good accuracy.

Artificial intelligence, machine learning, and deep learning in women's health nursing

  • Jeong, Geum Hee
    • Women's Health Nursing
    • /
    • v.26 no.1
    • /
    • pp.5-9
    • /
    • 2020
  • Artificial intelligence (AI), which includes machine learning and deep learning has been introduced to nursing care in recent years. The present study reviews the following topics: the concepts of AI, machine learning, and deep learning; examples of AI-based nursing research; the necessity of education on AI in nursing schools; and the areas of nursing care where AI is useful. AI refers to an intelligent system consisting not of a human, but a machine. Machine learning refers to computers' ability to learn without being explicitly programmed. Deep learning is a subset of machine learning that uses artificial neural networks consisting of multiple hidden layers. It is suggested that the educational curriculum should include big data, the concept of AI, algorithms and models of machine learning, the model of deep learning, and coding practice. The standard curriculum should be organized by the nursing society. An example of an area of nursing care where AI is useful is prenatal nursing interventions based on pregnant women's nursing records and AI-based prediction of the risk of delivery according to pregnant women's age. Nurses should be able to cope with the rapidly developing environment of nursing care influenced by AI and should understand how to apply AI in their field. It is time for Korean nurses to take steps to become familiar with AI in their research, education, and practice.

Deep Learning in Genomic and Medical Image Data Analysis: Challenges and Approaches

  • Yu, Ning;Yu, Zeng;Gu, Feng;Li, Tianrui;Tian, Xinmin;Pan, Yi
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.204-214
    • /
    • 2017
  • Artificial intelligence, especially deep learning technology, is penetrating the majority of research areas, including the field of bioinformatics. However, deep learning has some limitations, such as the complexity of parameter tuning, architecture design, and so forth. In this study, we analyze these issues and challenges in regards to its applications in bioinformatics, particularly genomic analysis and medical image analytics, and give the corresponding approaches and solutions. Although these solutions are mostly rule of thumb, they can effectively handle the issues connected to training learning machines. As such, we explore the tendency of deep learning technology by examining several directions, such as automation, scalability, individuality, mobility, integration, and intelligence warehousing.

Korean Coreference Resolution with Guided Mention Pair Model Using Deep Learning

  • Park, Cheoneum;Choi, Kyoung-Ho;Lee, Changki;Lim, Soojong
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1207-1217
    • /
    • 2016
  • The general method of machine learning has encountered disadvantages in terms of the significant amount of time and effort required for feature extraction and engineering in natural language processing. However, in recent years, these disadvantages have been solved using deep learning. In this paper, we propose a mention pair (MP) model using deep learning, and a system that combines both rule-based and deep learning-based systems using a guided MP as a coreference resolution, which is an information extraction technique. Our experiment results confirm that the proposed deep-learning based coreference resolution system achieves a better level of performance than rule- and statistics-based systems applied separately

Emulearner: Deep Learning Library for Utilizing Emulab

  • Song, Gi-Beom;Lee, Man-Hee
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.4
    • /
    • pp.235-241
    • /
    • 2018
  • Recently, deep learning has been actively studied and applied in various fields even to novel writing and painting in ways we could not imagine before. A key feature is that high-performance computing device, especially CUDA-enabled GPU, supports this trend. Researchers who have difficulty accessing such systems fall behind in this fast-changing trend. In this study, we propose and implement a library called Emulearner that helps users to utilize Emulab with ease. Emulab is a research framework equipped with up to thousands of nodes developed by the University of Utah. To use Emulab nodes for deep learning requires a lot of human interactions, however. To solve this problem, Emulearner completely automates operations from authentication of Emulab log-in, node creation, configuration of deep learning to training. By installing Emulearner with a legitimate Emulab account, users can focus on their research on deep learning without hassle.

Effect of Korean Medicine Treatment on Children Who Visited Korean Medicine Hospital for Growth: A Case Report Using Deep Learning-Based Bone Age Program (성장을 주소로 한방병원에 내원한 환아의 한의치료 효과: Deep Learning 기반 골연령 판독 프로그램을 활용한 증례보고)

  • Ye Ji Han;Boram Lee
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.37 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • Objectives We aimed to compare the bone age (BA) estimation by a deep learning-based program and by a specialist in pediatrics of Korean medicine using the Tanner-Whitehouse 3 (TW3) technique for the cases of children who visited a Korean medicine hospital for growth, and to report the effect of Korean medicine treatment. Methods For three children who visited the Korean medicine hospital for growth, BA estimation by the deep learning program and by the specialist in pediatrics of Korean medicine using the TW3 technique was compared, and the time required for estimation was investigated. The change of height, BA, and predicted adult height (PAH) using deep learning program after Korean medicine treatment was observed. Results BA estimation of the left hand bone X-ray by the specialist using the TW3 technique showed a difference of -0.03 to +0.15 years from the estimation by the deep learning program. The mean estimation time was 5 minutes and 49 seconds per one for the specialist and 48 seconds for the deep learning program. During the treatment period, the height percentile and PAH estimated by deep learning program were increased after Korean medicine treatment compared to baseline while acceleration of BA was suppressed compared to chronological age. Conclusions BA estimation using the deep learning program and the TW3 technique showed a difference of less than 0.15 years, and in three cases of patients with growth as the chief complaint, Korean medicine treatment increased height percentile and PAH without accelerating BA maturation.