• Title/Summary/Keyword: deep sea water

Search Result 490, Processing Time 0.03 seconds

Fundamental Design of Development Facilities of Deep Ocean Water Resource at Gosung Sea (고성 해양심층수 개발시설의 기본설계 연구)

  • Kim, H.J.;Hong, S.W.;Choi, H.S.;Hong, K.Y.;Yang, C.K.;Hong, S.;Hong, S.Y.;Kim, J.H.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.83-88
    • /
    • 2003
  • Recently, deep ocean water (DOW), which is plentiful in the East sea, has been recognized a global resources for 21st century. To develop DOW resource of 300m deep at Gosung sea, the pipeline of about 4 km long is essentially required to establish land based model complex of DOWA techno-park at coastal zone. This study aims to establish design procedure of DOW supplying and utilizing systems, and to complete basic design of every major facilities. To design, various numerical analysis and engineering consideration have been studied by cooperative works for practical use.

  • PDF

Comparative Analysis of Resources Characteristics for Deep Ocean water and Brine Groundwater (해양심층수와 지하염수의 자원특성 비교분석)

  • Mun, Deok-Su;Jeong, Dong-Ho;Kim, Hyeon-Ju
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.333-335
    • /
    • 2003
  • Deep Ocean Water is formed within restricted area including polar sea (high latitude) by cooling of surface seawater and globally circulated in the state of insolation with surface seawater. Although not as obvious as estuaries mixing, Brine groundwater is mixture of recirculated seawater and groundwater. Seawater having high osmotic pressure infiltrate into unconfined aquifer where is connected to the sea. The ions dissolved in seawater are present in constant proportions to each other and to the total salt content of seawater. However deviation in ion proportions have been observed in some brine groundwater. Some causes of these exception to the Rule of constant proportions are due to many chemical reactions between periphery soil and groundwater. While Deep Ocean Water (DOW) have a large quantity of functional trace metals and biological affinity relative to brine groundwater, DOW have relatively small amount of harmful bacteria and artificial pollutants.

  • PDF

A Study on the Sea Water DTEC Power Generation System of the FPSO (FPSO의 온배수를 활용한 해수 DTEC 발전시스템에 대한 연구)

  • Song, Young-Uk
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • The development of limited petroleum resources for use with mankind inevitably explores and seeks to develop oil fields in the deep sea area, under the rise of the oil prices market situation. The use of Oceanic Thermal Energy Conversion (OTEC) technology, which operates the power generation facility using the temperature differences between the deep water and the surface water, is progressing actively as a trend to follow. In this study, the application of the Discharged Thermal Energy Conversion (DTEC) was designed and analyzed under the condition that the supply condition of seawater used in the FPSO installed in the deep sea area is changed up to 400m depth. In this case, it was confirmed that the design of the system that can generate more electric power according to the depth of water is confirmed, by thus applying the DTEC system by taking the cooling water at a deeper water depth than the existing design water depth. The FPSO considers the similarity of the OTEC power generation facilities, and will apply the DTEC system to FPSO in the deep sea area to accumulate technology and the conversion to further utilize the OTEC power generation facilities after the end of life cycle of oil production, which could be a solution to two important issues, namely, resource development and sustainable development.

Study of the sealing performance of tubing adapters in gas-tight deep-sea water sampler

  • Huang, Haocai;Yuan, Zhouli;Kang, Wuchen;Xue, Zhao;Chen, Xihao;Yang, Canjun;Ye, Yanying;Leng, Jianxing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.749-761
    • /
    • 2014
  • Tubing adapter is a key connection device in Gas-Tight Deep-Sea Water Sampler (GTWS). The sealing performance of the tubing adapter directly affects the GTWS's overall gas tightness. Tubing adapters with good sealing performance can ensure the transmission of seawater samples without gas leakage and can be repeatedly used. However, the sealing performance of tubing adapters made of different materials was not studied sufficiently. With the research discussed in this paper, the materials match schemes of the tubing adapters were proposed. With non-linear finite element contact analysis and sea trials in the South China Sea, it is expected that the recommended materials match schemes not only meet the requirements of tubing adapters' sealing performance but also provide the feasible options for the following research on tubing adapters in GTWS.

Mass Physical Properties in Deep-Sen Sediment from the Clarion-Clipperton Fracture Zone, Northeast Equatorial Pacific (북동태평양 클라리온-클리퍼톤 균열대 심해저 퇴적물의 물리적 특성에 관한 연구)

  • Chi, Sang-Bum;Lee, Hyun-Bok;Kim, Jong-Uk;Hyeong, Ki-Seong;Ko, Young-Tak;Lee, Kyeong-Yang
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.739-752
    • /
    • 2006
  • Deep-sea surface sediments acquired by multiple corer from 69 stations in the Clarion-Clipperton fracture zone of the northeast equatorial Pacific, were examined to understand the correlation of mass physical properties and sedimen-tological processes. The seabed of the middle part ($8-12^{\circ}N$) of the study area is mainly covered by biogenic siliceous sediment compared with pelagic red clays in the northern part ($16-17^{\circ}N$). In the southern part ($5-6^{\circ}N$), water depth is shallower than carbonate compensation depth (CCD). The mass physical properties such as grain size distribution, mean grain size, water content, specific grain density, wet bulk density, void ratio, and porosity of sediments are distinctly different among the three parts of the study area. Surface sediments in northern part are characterized by fine grain size and low water contents possibly due to low primary productivity and high detrital input. Conversely, sediments in the middle part are characterized by coarse grain size and high water contents, which might be caused by high surface productivity and deeper depth than CCD. The sediments show low water contents and high density in the southern part, which can be explained by shallower depth than CCD. Our results suggest that the variations in mass physical properties of sediments are influenced by combined effects including biogenic primary productivity of surface water, water depth, especially with respect to CCD, sedimentation rate, detrital input, and the geochemistry of the bottom water (for example, formation of authigenic clay minerals and dissolution of biogenic grains).

Energy Saving Strategies for Ice Rink using Sea-Water Heat Source Cooling System (해수열원을 이용한 빙상경기장의 에너지절약 방안에 관한 연구)

  • Kim, Samuel;Park, Jin-Young;Park, Jae-Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.53-59
    • /
    • 2014
  • Ice Rink is energy intensive building type. Concern of energy saving from buildings is one of very important issues nowadays. New and renewable energy sources for buildings are especially important when we concern about energy supply for buildings. Among new and renewable energy sources, use of seawater for heating and cooling is an emerging issue for energy conscious building design. The options of energy use from sea water heat sources are using deep sea water for direct cooling with heat exchange facilities, and using surface layer water with heat pump systems. In this study, energy consumptions for an Ice Rink building are analyzed according to the heat sources of air-conditioning systems; existing system and sea water heat source system, in a coastal city, Kangnung. The location of the city Kangnung is good for using both deep sea water which is constant temperature throughout the year less than $2^{\circ}C$, and surface layer water which should be accompanied with heat pump systems. The result shows that using sea water from 200m and 30m under sea lever can save annual energy consumption about 33% of original system and about 10% of that using seawater from 0m depth. Annual energy consumption is similar between the systems with seawater from 200m and 30m. Although the amount of energy saving in summer of the system with 200m depth is higher than that with 30m depth, the requirement of energy in winter of the system with 200m depth is bigger than that with 30m depth.

Mode Change of Deep Water Formation Deduced from Slow Variation of Thermal Structure: One-dimensional Model Study (열적 수직 구조의 장기 변화로부터 유추한 동해 심층수 형성 모드의 변환: 1차원 모델 연구)

  • Chae, Yeong-Ki;Seung, Young-Ho;Kang, Sok-Kuh
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2005
  • Recently, it has been observed in the East Sea that temperature increases below the thermocline, and dissolved oxygen increase in the intermediate layer but decrease below it. The layer of minimum dissolved oxygen deepens and the bottom homogeneous layer in oxygen becomes thinner. It emerges very probably that these changes are induced by the mode change of deep water formation associated with global warming. To further support this hypothesis, a one-dimensional model experiment is performed. First, a thermal profile is obtained by injecting a cold and high oxygen deep water into the bottom layer, say the bottom mode. Then, two thermal profiles are obtained from the bottom mode profile by assuming that either all the deep water introduce into the intermediate layer has been initiated, say the intermediate mode, or that only a part of the deep water has been initiated into the intermediate layer, say the intermediate-bottom mode. The results, from the intermediate-bottom mode experiment are closest to the observed results. They show quite well the tendency for oxygen to increase in the intermediate layer and the simultaneous thinning of the bottom homogeneous layer in oxygen. Therefore, it can be said that the recently observed slow variation of the thermal structure might be associated with changes in the deep water formation from the bottom mode to the intermediate-bottom mode.

Characteristics and Multipurpose Utilization of Deep Ocean Water Resource (해양 심층수의 자원적 특성 및 다목적 이용)

  • 김현주;오병두;홍석원
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.49-52
    • /
    • 2001
  • The more the population grow, the severer the shortage of a basic human needs such as food, clean water, energy resources and so on. We had proved the possibility of utilizing deep ocean water as a environmental friendly resource to solve comprehensively above-mentioned problems for mankind based on observation and analysis of water quality. This study aims to evaluate feasibility of deep ocean water application, and establish multipurpose development and cascade utilization system of deep ocean water in the coastal zone of East sea to promote ocean development and fisheries industries.

  • PDF

Effects of Desalinization Management on Rice Yield in Sea Water Flooded Field

  • Kim, Sang-Su;Yang, Won-Ha;Choi, Weon-Young;Park, Hong-Kyu;Choi, Min-Gyu;Back, Nam-Hyun;Kang, Si-Yong;Shin, Hyun-Tak;Cho, Soo-Yeon;Kwon, Seog-Ju;Ko, Bok-Rae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.1
    • /
    • pp.38-43
    • /
    • 1999
  • Over 2,000 ha of rice fields in the western and southern coastal region of Korea were flooded with sea water during the spring tide, on August 19-21, 1997, and the rice plant at heading stage was injured. The field surveys were undertaken at the sea water flooded paddy fields in Chonbuk Province, to identify the injury symptoms and rice yield damage subjected to different flooding condition and desalinization methods. Five days after sea water flooding at heading stage, the flag leaves of rice plants flooded with 30 ㎝ deep sea water withered from the tip, the withering progressed to the lower leaves in deeper flooding. The spikelets were spotted black and discolored from the tip at 50 ㎝ deep flooded rice, and some panicles changed to white at 80 ㎝ deep flooded rice. Most of the rice leaves submerged completely for an hour were withered and most of panicles changed to white. The milled rice yield, percentage of ripened grain, and 1000 grain weight of flooded rice decreased with deeper flooding water, higher water salinity and longer flooding time. Even under the same flooding conditions, the damage of rice yield varied with the growth stage: heading stage>dough stage>booting stage. Rice yield damage was less in the fields on the upper riverside than those of the fields on the estuary and seaside, because of lower water salinity. In a flooded field, the rice yield damages were reduced as the distance increased from the levees where the sea water inflowed and increased as the distance increased from the fresh water irrigation gate. The desalinization treatments consisting of frequent exchange of irrigation water and spraying with fresh water soon after flooding effectively reduced the rice yield damage.

  • PDF

Quality Characteristics of Low-Salt Myungran Jeotkal Fermented by Vegetable-Origin Lactic Acid Bacteria and Salt from Deep Sea Water

  • Lee, Deuk-Sik
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.2
    • /
    • pp.237-245
    • /
    • 2016
  • In this study, the physicochemical and sensory characteristics of low-salt Myungran jeotkal (Alaskan pollock roe) were evaluated after fermentation at $4^{\circ}C$ and $20^{\circ}C$ with or without the addition of deep sea water, salt from deep sea water, and vegetable-origin lactic acid bacteria (Lactobacillus fermentum JS, LBF). When fermented at $20^{\circ}C$, the addition of LBF to Myungran jeotkal resulted in a slow increase in lactic acid content, followed by an abrupt increase after five days of fermentation. However, when fermented at $4^{\circ}C$, the lactic acid content did not change significantly. Further, when Myungran jeotkal fermented at $4^{\circ}C$, the pH decreased as lactic acid production increased. The salinity of Myungran jeotkal fermented at $4^{\circ}C$ and $20^{\circ}C$ was 7% and was not affected by fermentation period. When fermented at $20^{\circ}C$, volatile basic nitrogen and amino nitrogen contents increased with increasing duration of fermentation. Further, volatile acid content decreased, however, the content of amino nitrogen increased after 11 days of fermentation with LBF and no salt effects were observed. When fermented at $20^{\circ}C$ for 13 days, preference (sensory evaluation) was the highest in all experimental groups after 9 days of fermentation, and then decreased as the fermentation period increased. The free amino acid content was highest (1,648.8 mg/100 g) in Myungran jeotkal when sun-dried salt and LBF were added, 2.3 times higher than in the control.