• 제목/요약/키워드: deep network

검색결과 2,982건 처리시간 0.038초

라벨 노이즈 환경에서 확률분포 예측 성능 향상 방법 (Probability distribution predicted performance improvement in noisy label)

  • 노준호;우승범;황원준
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.607-610
    • /
    • 2021
  • 지도학습에서 모델을 학습함에 있어 입력 데이터와 해당 데이터의 라벨이 필요하다. 하지만 신뢰성 있는 라벨링은 비용과 시간적인 면에서 많이 소요되며 이를 자동화할 경우 라벨이 언제나 맞는다는 보장이 없어 노이즈가 들어가게 된다. 이러한 라벨 노이즈 환경에서 지도학습을 진행할 경우 모델은 학습 초기에는 정확도가 올라가지만, 어느 정도 학습 후 정확도가 크게 감소되는 경향을 보인다. 라벨 노이즈 문제를 해결하기 위해 다양한 방법이 있지만, 대다수의 경우 모델이 예측한 확률을 수도라벨로 사용해 이용하는 경우가 많다. 여기에 대해서 우리는 모델이 예측한 확률을 정제하여 좀 더 빠르게 참 라벨을 예측하는 방법을 제시한다. 기존의 논문 중 모델이 예측한 확률을 사용하는 방법에 우리가 제안하는 방법을 적용하여 같은 환경, 데이터셋에 대해 실험을 진행한 결과 성능개선과 더 빠르게 수렴하는 것을 확인할 수 있었다. 이를 통해 기존 연구들 중 모델이 예측하는 확률분포를 사용하는 방법들에 적용할 수 있고 같은 환경에서도 더 빠르게 수렴시킬 수 있기에 학습 소요시간을 줄일 수 있다.

  • PDF

FitRec 기반 달리기 심박수 예측 시스템 (Prediction System of Running Heart Rate based on FitRec)

  • 김진욱;김광현;선준호;이승우;김수현;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권6호
    • /
    • pp.165-171
    • /
    • 2022
  • 사람의 심박수는 운동 강도 측정의 기준으로 사용되는 중요한 지표이다. 만약 심박수를 예측한다면 운동 중 운동 강도를 미리 조절하여 효율적으로 운동할 수 있다. 본 논문에서는 FitRec 기반 달리기 운동을 수행하는 사용자의 심박수를 예측하는 모델을 제안한다. 학습을 위해 Endomondo의 데이터를 사용하여 예측 모델에 적용한다. 성능 비교를 위해 시계열 데이터 처리 알고리즘 LSTM(long short term memory)과 GRU(gated recurrent unit)를 사용하였다. FitRec에 유산소 운동 중 달리기 데이터만 학습한 결과 여러 유산소 운동 데이터를 모두 학습한 모델보다 MAE(mean absolute error)와 RMSE(root mean squared error) 둘 다 성능이 향상됨을 확인하였다.

가중치 VAE 오버샘플링(W-VAE)을 이용한 보안데이터셋 샘플링 기법 연구 (A Data Sampling Technique for Secure Dataset Using Weight VAE Oversampling(W-VAE))

  • 강한바다;이재우
    • 한국정보통신학회논문지
    • /
    • 제26권12호
    • /
    • pp.1872-1879
    • /
    • 2022
  • 최근 인공지능 기술이 발전하면서 해킹 공격을 탐지하기 위해 인공지능을 이용하려는 연구가 활발히 진행되고 있다. 하지만, 인공지능 모델 개발에 핵심인 학습데이터를 구성하는데 있어서 보안데이터가 대표적인 불균형 데이터라는 점이 큰 장애물로 인식되고 있다. 이에 본 눈문에서는 오버샘플링을 위한 데이터 추출에 딥러닝 생성 모델인 VAE를 적용하고 K-NN을 이용한 가중치 계산을 통해 클래스별 오버샘플링 개수를 설정하여 샘플링을 하는 W-VAE 오버샘플링 기법을 제안한다. 본 논문에서는 공개 네트워크 보안 데이터셋인 NSL-KDD를 통해 ROS, SMOTE, ADASYN 등 총 5가지 오버샘플링 기법을 적용하였으며 본 논문에서 제안한 오버샘플링 기법이 F1-Score 평가지표를 통해 기존 오버샘플링 기법과 비교하여 가장 효과적인 샘플링 기법임을 증명하였다.

초해상화 모델의 활성함수 변경에 따른 성능 분석 (Performance Analysis of Various Activation Functions in Super Resolution Model)

  • 유영준;김대희;이재구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.504-507
    • /
    • 2020
  • ReLU(Rectified Linear Unit) 함수는 제안된 이후로 대부분의 깊은 인공신경망 모델들에서 표준 활성함수로써 지배적으로 사용되었다. 이후에 ReLU 를 대체하기 위해 Leaky ReLU, Swish, Mish 활성함수가 제시되었는데, 이들은 영상 분류 과업에서 기존 ReLU 함수 보다 향상된 성능을 보였다. 따라서 초해상화(Super Resolution) 과업에서도 ReLU 를 다른 활성함수들로 대체하여 성능 향상을 얻을 수 있는지 실험해볼 필요성을 느꼈다. 본 연구에서는 초해상화 과업에서 안정적인 성능을 보이는 EDSR(Enhanced Deep Super-Resolution Network) 모델의 활성함수들을 변경하면서 성능을 비교하였다. 결과적으로 EDSR 의 활성함수를 변경하면서 진행한 실험에서 해상도를 2 배로 변환하는 경우, 기존 활성함수인 ReLU 가 실험에 사용된 다른 활성함수들 보다 비슷하거나 높은 성능을 보였다. 하지만 해상도를 4 배로 변환하는 경우에서는 Leaky ReLU 와 Swish 함수가 기존 ReLU 함수대비 다소 향상된 성능을 보임을 확인하였다. 구체적으로 Leaky ReLU 를 사용했을 때 기존 ReLU 보다 영상의 품질을 정량적으로 평가할 수 있는 PSNR 과 SSIM 평가지표가 평균 0.06%, 0.05%, Swish 를 사용했을 때는 평균 0.06%, 0.03%의 성능 향상을 확인할 수 있었다. 4 배의 해상도를 높이는 초해상화의 경우, Leaky ReLU 와 Swish 가 ReLU 대비 향상된 성능을 보였기 때문에 향후 연구에서는 다른 초해상화 모델에서도 성능 향상을 위해 활성함수를 Leaky ReLU 나 Swish 로 대체하는 비교실험을 수행하는 것도 필요하다고 판단된다.

위성영상 및 CNN을 활용한 소규모 농업용 저수지의 수표면적 시계열 분석 (Temporal Analysis of Agricultural Reservoir Water Surface Area using Remote Sensing and CNN)

  • 양미혜;남원호;이희진;김태곤
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.118-118
    • /
    • 2021
  • 최근 지구 온난화 현상으로 인한 기후변화로 이상기후 현상이 발생하고 있으며 이로 인해 장기적으로 폭염의 빈도 및 강도 상승에 따른 가뭄 피해 우려가 증가하고 있다. 농업 가뭄은 강수량 부족, 토양 수분 부족, 저수량 부족 등 농업분야에 영향을 주는 인자들과 관련되어 있어 농작물 생육 및 수확량 감소를 야기한다. 우리나라는 논농사가 주를 이루고 있어 국내 농업 가뭄은 주수원공인 농업용 저수지의 가용저수용량으로 판단 가능하다. 따라서 안정적인 농업용수 공급을 위해 수리시설물의 모니터링, 공급량 등의 분석이 이루어져야 하며, 농업 가뭄에 대비하기 위해 농업용 저수지의 가용저수용량 파악이 필요하다. 수자원 분야에서 지점자료의 시·공간적 한계점을 보완하기 위해 인공위성 자료를 활용한 연구가 활발히 이루어지고 있으며, 본 연구에서는 위성영상 자료 및 딥러닝 기반 알고리즘을 적용하여 농업용 저수지 수표면 탐지 및 시계열 분석을 목적으로 한다. 위성영상 자료는 5일 주기 및 10 m 공간해상도를 가진 Sentinel-2 위성영상 자료를 활용하고자 하였으며, 딥러닝에 적용하기 위하여 100장 이상의 영상 이미지를 구축하였다. 딥러닝 기반 알고리즘으로는 Convolutional Neural Network (CNN)을 활용하였으며, CNN은 주로 이미지 분류나 객체 검출 문제를 해결하기 위해 제안된 모델로 최근 픽셀 단위로 분류가 가능한 알고리즘이 개발되어 높은 정확도의 수표면 탐지가 가능할 것으로 판단된다. 따라서 본 연구에서는 CNN 기반 수표면 탐지 알고리즘을 개발하여 Sentinel-2 영상 기준 경기도 안성시를 대상으로 소규모 농업용 저수지의 수표면적에 대한 시계열 데이터를 분석하고자 한다.

  • PDF

DEEP-South: Asteroid Light-Curve Survey Using KMTNet

  • Lee, Hee-Jae;Yang, Hongu;Kim, Dong-Heun;Kim, Myung-Jin;Moon, Hong-Kyu;Kim, Chun-Hwey;Choi, Young-Jun
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.46.3-47
    • /
    • 2020
  • Variations in the brightness of asteroids are caused by their spins, irregular shapes and companions. Thus, in principle, the spin state and shape model of a single object or, a combined model of spins, shapes and mutual orbit of a multiple components can be constructed from the analysis of light curves obtained from the time-series photometry. Using ground- and space-based facilities, a number of time-series photometric observations of asteroids have been conducted to find the possible causes of their light variations. Nonetheless, only about 2% of the known asteroids have been confirmed for their rotation periods. Therefore, a follow-on systematic photometric survey of asteroids is essential. We started an asteroid light curve survey for this purpose using Korea Microlensing Telescope Network (KMTNet) during 199 nights between the second half of 2019 and the first half of 2020. We monitored within a 2° × 14° region of the sky per each night with 25 min cadences. In order to observe as many asteroids as possible with a single exposure, we mostly focus on the ecliptic plane. In our survey, 25,925 asteroids were observed and about 8,000 of them were confirmed for their rotation periods. In addition, using KMTNet's 24-hour continuous monitoring, we collected many composite light curves of slow rotating asteroids that were rarely obtained with previous observations. In this presentation, we will introduce the typical light curves of asteroids obtained from our survey and present a statistical analysis of spin states and shapes of the asteroids from this study.

  • PDF

군집 별 표준곡선 매개변수를 이용한 치밀오일 생산성 예측 순환신경망 모델 (Recurrent Neural Network Model for Predicting Tight Oil Productivity Using Type Curve Parameters for Each Cluster)

  • 한동권;김민수;권순일
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.297-299
    • /
    • 2021
  • 치밀오일 미래 생산성 예측은 잔류오일 회수량 및 저류층 거동 분석을 위해 중요한 작업이다. 일반적으로 석유공학적 관점에서 감퇴곡선법을 이용하여 생산성 예측이 이루어지는데, 최근에는 데이터기반의 머신러닝 기법을 이용한 연구도 수행되고 있다. 본 연구에서는 딥러닝 기반 순환신경망과 LSTM, GRU 알고리즘을 이용하여 미래 생산량 예측을 위한 효과적인 모델을 제안하고자 한다. 입력변수로는 치밀오일 생산 시 산출되는 오일, 가스, 물과 이와 더불어 다양한 군집분석을 통해 산출된 표준곡선이 주요 매개변수이고, 출력변수는 월별 오일 생산량이다. 기존의 경험적 모델인 감퇴곡선법과 순환신경망 모델들을 비교하였으며, 모델의 예측성능을 향상시키기 위해 하이퍼파라미터 튜닝을 통해 최적 모델을 도출하였다.

  • PDF

텍스트 요약 품질 향상을 위한 의미적 사전학습 방법론 (Semantic Pre-training Methodology for Improving Text Summarization Quality)

  • 전민규;김남규
    • 스마트미디어저널
    • /
    • 제12권5호
    • /
    • pp.17-27
    • /
    • 2023
  • 최근 사용자에게 의미있는 정보만을 자동으로 간추리는 텍스트 자동 요약이 꾸준히 연구되고 있으며, 특히 인공신경망 모델인 트랜스포머를 활용한 텍스트 요약 연구가 주로 수행되고 있다. 다양한 연구 중 특히 문장 단위 마스킹을 통해 모델을 학습시키는 GSG 방식이 가장 주목을 받고 있지만, 전통적인 GSG는 문장의 의미가 아닌 토큰의 중복 정도에 기반을 두어 마스킹 대상 문장을 선정한다는 한계를 갖는다. 따라서 본 연구에서는 텍스트 요약의 품질을 향상시키기 위해, 문장의 의미를 고려하여 GSG의 마스킹 대상 문장을 선정하는 SbGSG(Semantic-based GSG) 방법론을 제안한다. 뉴스기사 370,000건과 요약문 및 레포트 21,600건을 사용하여 실험을 수행한 결과, ROUGE와 BERT Score 측면에서 제안 방법론인 SbGSG가 전통적인 GSG에 비해 우수한 성능을 보임을 확인하였다.

A Hybrid Semantic-Geometric Approach for Clutter-Resistant Floorplan Generation from Building Point Clouds

  • Kim, Seongyong;Yajima, Yosuke;Park, Jisoo;Chen, Jingdao;Cho, Yong K.
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.792-799
    • /
    • 2022
  • Building Information Modeling (BIM) technology is a key component of modern construction engineering and project management workflows. As-is BIM models that represent the spatial reality of a project site can offer crucial information to stakeholders for construction progress monitoring, error checking, and building maintenance purposes. Geometric methods for automatically converting raw scan data into BIM models (Scan-to-BIM) often fail to make use of higher-level semantic information in the data. Whereas, semantic segmentation methods only output labels at the point level without creating object level models that is necessary for BIM. To address these issues, this research proposes a hybrid semantic-geometric approach for clutter-resistant floorplan generation from laser-scanned building point clouds. The input point clouds are first pre-processed by normalizing the coordinate system and removing outliers. Then, a semantic segmentation network based on PointNet++ is used to label each point as ceiling, floor, wall, door, stair, and clutter. The clutter points are removed whereas the wall, door, and stair points are used for 2D floorplan generation. A region-growing segmentation algorithm paired with geometric reasoning rules is applied to group the points together into individual building elements. Finally, a 2-fold Random Sample Consensus (RANSAC) algorithm is applied to parameterize the building elements into 2D lines which are used to create the output floorplan. The proposed method is evaluated using the metrics of precision, recall, Intersection-over-Union (IOU), Betti error, and warping error.

  • PDF

비정형 금융 데이터에 관한 인공지능 CNN 활용 빅데이터 연구 (Big Data using Artificial Intelligence CNN on Unstructured Financial Data)

  • 고영봉;박대우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.232-234
    • /
    • 2022
  • 빅데이터는 고객 관계 관리, 관계 마케팅, 금융 업무 개선, 신용정보 및 위험 관리 분야에서 크게 활용되고 있다. 더욱이 최근에 COVID-19 바이러스로 인하여 비대면 금융거래가 보다 활발해지면서 고객과의 관계 측면에서 금융 빅데이터의 활용이 더 요구되고 있다. 고객 관계 측면에서 금융 빅데이터는 기술적인 접근보다 감성적적인 접근이 필요한 시기가 도래하였다. 관계 마케팅 측면에서도 인지적, 이성적, 합리적인 면보다는 감성적인 면을 중요시 할 필요성이 대두되었다. 하지만, 기존의 금융 데이터는 텍스트 형태의 고객 거래 데이터, 기업재무정보, 설문지등을 통하여 수집되고 활용되었다. 본 연구는 SNS를 통하여 고객의 문화 활동, 여가 활동 기반의 고객의 감성적인 이미지 데이터 즉, 비정형 데이터를 획득하여 고객의 활동 이미지를 인공지능 CNN 알고리즘으로 분석한다. 활동 분석은 다시 주석을 달은 인공지능에 적용하고, 주석에 나타난 행동 모델을 분석하는 인공지능 빅데이터 모델을 설계한다.

  • PDF