• Title/Summary/Keyword: deep network

Search Result 2,982, Processing Time 0.033 seconds

Comparison Analysis of Four Face Swapping Models for Interactive Media Platform COX (인터랙티브 미디어 플랫폼 콕스에 제공될 4가지 얼굴 변형 기술의 비교분석)

  • Jeon, Ho-Beom;Ko, Hyun-kwan;Lee, Seon-Gyeong;Song, Bok-Deuk;Kim, Chae-Kyu;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.535-546
    • /
    • 2019
  • Recently, there have been a lot of researches on the whole face replacement system, but it is not easy to obtain stable results due to various attitudes, angles and facial diversity. To produce a natural synthesis result when replacing the face shown in the video image, technologies such as face area detection, feature extraction, face alignment, face area segmentation, 3D attitude adjustment and facial transposition should all operate at a precise level. And each technology must be able to be interdependently combined. The results of our analysis show that the difficulty of implementing the technology and contribution to the system in facial replacement technology has increased in facial feature point extraction and facial alignment technology. On the other hand, the difficulty of the facial transposition technique and the three-dimensional posture adjustment technique were low, but showed the need for development. In this paper, we propose four facial replacement models such as 2-D Faceswap, OpenPose, Deekfake, and Cycle GAN, which are suitable for the Cox platform. These models have the following features; i.e. these models include a suitable model for front face pose image conversion, face pose image with active body movement, and face movement with right and left side by 15 degrees, Generative Adversarial Network.

Influential Factor Based Hybrid Recommendation System with Deep Neural Network-Based Data Supplement (심층신경망 기반 데이터 보충과 영향요소 결합을 통한 하이브리드 추천시스템)

  • An, Hyeon-woo;Moon, Nammee
    • Journal of Broadcast Engineering
    • /
    • v.24 no.3
    • /
    • pp.515-526
    • /
    • 2019
  • In the real world, the user's preference for a particular product is determined by many factors besides the quality of the product. The reflection of these external factors was very difficult because of various fundamental problems including lack of data. However, access to external factors has become easier as the infrastructure for public data is opened and the availability of evaluation platforms with diverse and vast amounts of data. In accordance with these changes, this paper proposes a recommendation system structure that can reflect the collectable factors that affect user's preference, and we try to observe the influence of actual influencing factors on preference by applying case. The structure of the proposed system can be divided into a process of selecting and extracting influencing factors, a process of supplementing insufficient data using sentence analysis, and finally a process of combining and merging user's evaluation data and influencing factors. We also propose a validation process that can determine the appropriateness of the setting of the structural variables such as the selection of the influence factors through comparison between the result group of the proposed system and the actual user preference group.

Efficient Inference of Image Objects using Semantic Segmentation (시멘틱 세그멘테이션을 활용한 이미지 오브젝트의 효율적인 영역 추론)

  • Lim, Heonyeong;Lee, Yurim;Jee, Minkyu;Go, Myunghyun;Kim, Hakdong;Kim, Wonil
    • Journal of Broadcast Engineering
    • /
    • v.24 no.1
    • /
    • pp.67-76
    • /
    • 2019
  • In this paper, we propose an efficient object classification method based on semantic segmentation for multi-labeled image data. In addition to various pixel unit information and processing techniques such as color information, contour, contrast, and saturation included in image data, a detailed region in which each object is located is extracted as a meaningful unit and the experiment is conducted to reflect the result in the inference. We use a neural network that has been proven to perform well in image classification to understand which object is located where image data containing various class objects are located. Based on these researches, we aim to provide artificial intelligence services that can classify real-time detailed areas of complex images containing various objects in the future.

THE GEOMETRIC ALBEDO OF (4179) TOUTATIS ESTIMATED FROM KMTNET DEEP-SOUTH OBSERVATIONS

  • Bach, Yoonsoo P.;Ishiguro, Masateru;Jin, Sunho;Yang, Hongu;Moon, Hong-Kyu;Choi, Young-Jun;JeongAhn, Youngmin;Kim, Myung-Jin;Kwak, SungWon
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.3
    • /
    • pp.71-82
    • /
    • 2019
  • We derive the geometric albedo of a near-Earth asteroid, (4179) Toutatis, to investigate its surface physical conditions. The asteroid has been studied rigorously not only via ground-based photometric, spectrometric, polarimetric, and radar observations but also via in situ observation by the Chinese Chang'e-2 space probe; however, its geometric albedo is not well understood. We conducted V-band photometric observations when the asteroid was at opposition in April 2018 using the three telescopes in the southern hemisphere that compose the Korea Microlensing Telescope Network (KMTNet). The observed time-variable cross section was corrected using the radar shape model. We find that Toutatis has a geometric albedo $p_V=0.185^{+0.045}_{-0.039}$, which is typical of S-type asteroids. We compare the geometric albedo with archival polarimetric data and further find that the polarimetric slope-albedo law provides a reliable estimate for the albedo of this S-type asteroid. The thermal infrared observation also produced similar results if the size of the asteroid is updated to match the results from Chang'e-2. We conjecture that the surface of Toutatis is covered with grains smaller than that of the near-Sun asteroids including (1566) Icarus and (3200) Phaethon.

Diabetes prediction mechanism using machine learning model based on patient IQR outlier and correlation coefficient (환자 IQR 이상치와 상관계수 기반의 머신러닝 모델을 이용한 당뇨병 예측 메커니즘)

  • Jung, Juho;Lee, Naeun;Kim, Sumin;Seo, Gaeun;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1296-1301
    • /
    • 2021
  • With the recent increase in diabetes incidence worldwide, research has been conducted to predict diabetes through various machine learning and deep learning technologies. In this work, we present a model for predicting diabetes using machine learning techniques with German Frankfurt Hospital data. We apply outlier handling using Interquartile Range (IQR) techniques and Pearson correlation and compare model-specific diabetes prediction performance with Decision Tree, Random Forest, Knn (k-nearest neighbor), SVM (support vector machine), Bayesian Network, ensemble techniques XGBoost, Voting, and Stacking. As a result of the study, the XGBoost technique showed the best performance with 97% accuracy on top of the various scenarios. Therefore, this study is meaningful in that the model can be used to accurately predict and prevent diabetes prevalent in modern society.

CNN-Based Toxic Plant Identification System (CNN 기반 독성 식물 판별 시스템)

  • Park, SungHyun;Lim, Byeongyeon;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.993-998
    • /
    • 2020
  • The technology of interiors is currently developing around the world. According to various studies, the use of plants to create an environment in the home interior is increasing. However, households using furniture are designed as environment-friendly environment interiors, and in Korea and abroad, plants are used for home interiors. Unexpected accidents are occurring. As a result, there were books and broadcasts about the dangers of specific plants, but until now, accidents continue to occur because they do not properly recognize the dangers of specific plants. Therefore, in this paper, we propose a toxic plant identification system based on a multiplicative neural network model that identifies common toxic plants commonly found in Korea. We propose a high efficiency model. Through this, toxic plants can be identified with higher accuracy and safety accidents caused by toxic plants.

Indoor Scene Classification based on Color and Depth Images for Automated Reverberation Sound Editing (자동 잔향 편집을 위한 컬러 및 깊이 정보 기반 실내 장면 분류)

  • Jeong, Min-Heuk;Yu, Yong-Hyun;Park, Sung-Jun;Hwang, Seung-Jun;Baek, Joong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.384-390
    • /
    • 2020
  • The reverberation effect on the sound when producing movies or VR contents is a very important factor in the realism and liveliness. The reverberation time depending the space is recommended in a standard called RT60(Reverberation Time 60 dB). In this paper, we propose a scene recognition technique for automatic reverberation editing. To this end, we devised a classification model that independently trains color images and predicted depth images in the same model. Indoor scene classification is limited only by training color information because of the similarity of internal structure. Deep learning based depth information extraction technology is used to use spatial depth information. Based on RT60, 10 scene classes were constructed and model training and evaluation were conducted. Finally, the proposed SCR + DNet (Scene Classification for Reverb + Depth Net) classifier achieves higher performance than conventional CNN classifiers with 92.4% accuracy.

An Analysis of Artificial Intelligence Algorithms Applied to Rock Engineering (암반공학분야에 적용된 인공지능 알고리즘 분석)

  • Kim, Yangkyun
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.25-40
    • /
    • 2021
  • As the era of Industry 4.0 arrives, the researches using artificial intelligence in the field of rock engineering as well have increased. For a better understanding and availability of AI, this paper analyzed the types of algorithms and how to apply them to the research papers where AI is applied among domestic and international studies related to tunnels, blasting and mines that are major objects in which rock engineering techniques are applied. The analysis results show that the main specific fields in which AI is applied are rock mass classification and prediction of TBM advance rate as well as geological condition ahead of TBM in a tunnel field, prediction of fragmentation and flyrock in a blasting field, and the evaluation of subsidence risk in abandoned mines. Of various AI algorithms, an artificial neural network is overwhelmingly applied among investigated fields. To enhance the credibility and accuracy of a study result, an accurate and thorough understanding on AI algorithms that a researcher wants to use is essential, and it is expected that to solve various problems in the rock engineering fields which have difficulty in approaching or analyzing at present, research ideas using not only machine learning but also deep learning such as CNN or RNN will increase.

The Driving Situation Judgment System(DSJS) using road roughness and vehicle passenger conditions (도로 거칠기와 차량의 승객 상태를 활용한 DSJS(Driving Situation Judgment System) 설계)

  • Son, Su-Rak;Jeong, Yi-Na;Ahn, Heui-Hak
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.3
    • /
    • pp.223-230
    • /
    • 2021
  • Currently, self-driving vehicles are on the verge of commercialization after testing. However, even though autonomous vehicles have not been fully commercialized, 81 accidents have occurred, and the driving method of vehicles to avoid accidents relies heavily on LiDAR. In order for the currently commercialized 3-level autonomous vehicle to develop into a 4-level autonomous vehicle, more information must be collected than previously collected information. Therefore, this paper proposes a Driving Situation Judgment System (DSJS) that accurately calculates the crisis situation the vehicle is in by useing the roughness of the road and the state of the passengers of surrounding vehicles including road information and weather information collected from existing autonomous vehicles. As a result of DSJS's PDM experiment, PDM was able to classify passengers 15.52% more accurately on average than the existing vehicle's passenger recognition system. This study can be a basic research to achieve the 4th level autonomous vehicle by collecting more various types than the data collected by the existing 3rd level autonomous vehicle.

Dance Storytelling Perspective and Searching for Dance in Korea - Cheoyongmu text Centered on - (한국춤 스토리텔링 관점과 모색방안 - 처용무 텍스트를 예로 -)

  • Kim, Ji-won
    • (The) Research of the performance art and culture
    • /
    • no.35
    • /
    • pp.373-404
    • /
    • 2017
  • As an art, Korean dance is a history, a tradition, and a continuing activity of consciousness. It is a present and future activity in the past that will continue the identity of Korean people. So storytelling is not just a description of the historical background, but of eternity that is being recreated. From this study, the inquiry of artistic beauty of Korean traditional dance is questioning the original essence and value of 'storytelling' through old tradition and historical art. If the study of the Korean dance among them was a study of the theorists for the aesthetic essence or the ideological system, the point of view of the storytelling of the Korean dance is that the public understanding about the core structure and reason of Korean dance and the study of the humanistic value It reminded me of a desperate attitude. The meaning of this study is to verify the usefulness of storytelling as a way to construct various contents of Korean dance in conceptual definition of storytelling. In the symbolic meaning of Korean dance, Cheoyongmu text formed the deep meaning network of the original art beyond the linguistic narrative structure and suggested the importance of storytelling development as DB of original contents.