• 제목/요약/키워드: deep mining

검색결과 322건 처리시간 0.022초

심해 장비용 압력보상유의 압축성 계수 측정을 위한 실험적 연구 (Experimental Study on Compressibility Modulus of Pressure Compensation Oil for Underwater Vehicle)

  • 김진호;윤석민;홍섭;민천홍;성기영;여태경;최혁진;이승국
    • Ocean and Polar Research
    • /
    • 제37권1호
    • /
    • pp.73-80
    • /
    • 2015
  • In order to determine the appropriate volume of the a pressure compensator of deep seabed mining robots, this paper reports on an experimental test for oil volume change in an oil-filled box. At the design stage of underwater robots, it is crucial to determine the capacity of the hydraulic compensator which is replenished as much as the contracted oil volume of the robots. A pilot mining robot, MienRo was designed to work under 6,000 m in the deep sea. The hydraulic actuating oil and pressure compensating oil of MineRo may be exposed at a hydrostatic pressure environment of 600 bar. Although the oil can be assumed to be incompressible, its volume is actually changed under high pressure conditions due to air contained in the oil and oil contraction. To determine the capacity of the pressure compensator, the oil contraction rate should be verified through an experimental test using a hyperbaric chamber.

Estimation of groundwater inflow into an underground oil storage facility in granite

  • Wang, Zhechao;Kwon, Sangki;Qiao, Liping;Bi, Liping;Yu, Liyuan
    • Geomechanics and Engineering
    • /
    • 제12권6호
    • /
    • pp.1003-1020
    • /
    • 2017
  • Estimation of groundwater inflow into underground opening is of critical importance for the design and construction of underground structures. Groundwater inflow into a pilot underground storage facility in China was estimated using analytical equations, numerical modeling and field measurement. The applicability of analytical and numerical methods was examined by comparing the estimated and measured results. Field geological investigation indicated that in local scale the high groundwater inflows are associated with the appearance of open joints, fractured zone or dykes induced by shear and/or tensile tectonic stresses. It was found that 8 groundwater inflow spots with high inflow rates account for about 82% of the total rate for the 9 caverns. On the prediction of the magnitude of groundwater inflow rate, it was found that could both (Finite Element Method) FEM and (Discrete Element Method) DEM perform better than analytical equations, due to the fact that in analytical equations simplified assumptions were adopted. However, on the prediction of the spatial distribution estimation of groundwater inflow, both analytical and numerical methods failed to predict at the present state. Nevertheless, numerical simulations would prevail over analytical methods to predict the distribution if more details in the simulations were taken into consideration.

Nonlinear stability of the upper chords in half-through truss bridges

  • Wen, Qingjie;Yue, Zixiang;Liu, Zhijun
    • Steel and Composite Structures
    • /
    • 제36권3호
    • /
    • pp.307-319
    • /
    • 2020
  • The upper chords in half-through truss bridges are prone to buckling due to a lack of the upper transverse connections. Taking into account geometric and material nonlinearity, nonlinear finite-element analysis of a simple supported truss bridge was carried out to exhibit effects of different types of initial imperfections. A half-wave of initial imperfection was proved to be effective in the nonlinear buckling analysis. And a parameter analysis of initial imperfections was also conducted to reveal that the upper chords have the greatest impact on the buckling, followed by the bottom chords, vertical and diagonal web members. Yet initial imperfections of transverse beams have almost no effect on the buckling. Moreover, using influence surface method, the combinatorial effects of initial imperfections were compared to demonstrate that initial imperfections of the upper chords play a leading role. Furthermore, the equivalent effective length coefficients of the upper chord were derived to be 0.2~0.28 by different methods, which implies vertical and diagonal web members still provide effective constraints for the upper chord despite a lack of the upper transverse connections between the two upper chords. Therefore, the geometrical and material nonlinear finite-element method is effective in the buckling analysis due to its higher precision. Based on nonlinear analysis and installation deviations of members, initial imperfection of l/500 is recommended in the nonlinear analysis of half-through truss bridges without initial imperfection investigation.

Estimation of spatial autocorrelation variations of uncertain geotechnical properties for the frozen ground

  • Wang, Di;Wang, Tao;Xu, Daqing;Zhou, Guoqing
    • Geomechanics and Engineering
    • /
    • 제22권4호
    • /
    • pp.339-348
    • /
    • 2020
  • The uncertain geotechnical properties of frozen soil are important evidence for the design, operation and maintenance of the frozen ground. The complex geological, environmental and physical effects can lead to the spatial variations of the frozen soil, and the uncertain mechanical properties are the key factors for the uncertain analysis of frozen soil engineering. In this study, the elastic modulus, strength and Poisson ratio of warm frozen soil were measured, and the statistical characteristics under different temperature conditions are obtained. The autocorrelation distance (ACD) and autocorrelation function (ACF) of uncertain mechanical properties are estimated by random field (RF) method. The results show that the mean elastic modulus and mean strength decrease with the increase of temperature while the mean Poisson ratio increases with the increase of temperature. The average values of the ACD for the elastic modulus, strength and Poisson ratio are 0.64m, 0.53m and 0.48m, respectively. The standard deviation of the ACD for the elastic modulus, strength and Poisson ratio are 0.03m, 0.07m and 0.03m, respectively. The ACFs of elastic modulus, strength and Poisson ratio decrease with the increase of ratio of local average distance and scale of fluctuation. The ACF of uncertain mechanical properties is different when the temperature is different. This study can improve our understanding of the spatial autocorrelation variations of uncertain geotechnical properties and provide a basis and reference for the uncertain settlement analysis of frozen soil foundation.

Incompatible deformation and damage evolution of mixed strata specimens containing a circular hole

  • Yang, Shuo;Li, Yuanhai;Chen, Miao;Liu, Jinshan
    • Geomechanics and Engineering
    • /
    • 제20권5호
    • /
    • pp.461-474
    • /
    • 2020
  • Analysing the incompatible deformation and damage evolution around the tunnels in mixed strata is significant for evaluating the tunnel stability, as well as the interaction between the support system and the surrounding rock mass. To investigate this issue, confined compression tests were conducted on upper-soft and lower-hard strata specimens containing a circular hole using a rock testing system, the physical mechanical properties were then investigated. Then, the incompatible deformation and failure modes of the specimens were analysed based on the digital speckle correlation method (DSCM) and Acoustic Emission (AE) data. Finally, numerical simulations were conducted to explore the damage evolution of the mixed strata. The results indicate that at low inclination angles, the deformation and v-shaped notches inside the hole are controlled by the structure plane. Progressive spalling failure occurs at the sidewalls along the structure plane in soft rock. But the transmission of the loading force between the soft rock and hard rock are different in local. At high inclination angles, v-shaped notches are approximately perpendicular to the structure plane, and the soft and hard rock bear common loads. Incompatible deformation between the soft rock and hard rock controls the failure process. At inclination angles of 0°, 30° and 90°, incompatible deformations are closely related to rock damage. At 60°, incompatible deformations and rock damage are discordant due that the soft rock and hard rock alternately bears the major loads during the failure process. The failure trend and modes of the numerical results agree very well with those observed in the experimental results. As the inclination angles increase, the proportion of the shear or tensile damage exhibits a nonlinear increase or decrease, suggesting that the inclination angle of mixed strata may promote shear damage and restrain tensile damage.

심해저 채광 시스템에서 유연관의 안정적인 운용을 위한 부력재 배치 설계 (Arrangement Plan of Buoyancy Modules for the Stable Operation of the Flexible Riser in a Deep-Seabed Mining System)

  • 오재원;민천홍;이창호;홍섭;배대성;임준현;김형우
    • Ocean and Polar Research
    • /
    • 제37권2호
    • /
    • pp.119-125
    • /
    • 2015
  • This paper focuses on the efficient arrangement plan of buoyancy modules, which plan is used to secure the safe operation and structural stability of a marine riser. The marine riser is connected between a vessel and seabed devices. The movement of the vessel and the seabed devices are affected by the motion of the riser. The riser of a deep-seabed integrated mining system exerts a strong influence on the healthy transfer of minerals. So, buoyancy modules must be equipped to compensate for the problem which is the structure stability and the dynamic motion. Installation locations and quantities of the buoyancy modules are determined by real sea experiments. But this is not easy to do because in real sea experimental conditions the cost is expensive as well as being, time-consuming and dangerous. Therefore, the locations and quantities should be determined by numerical simulation. This method is called simulation-based design. The dynamic analysis models of the riser and the buoyancy modules are built into the commercial software of DAFUL.

Impact of rock microstructures on failure processes - Numerical study based on DIP technique

  • Yu, Qinglei;Zhu, Wancheng;Tang, Chun'an;Yang, Tianhong
    • Geomechanics and Engineering
    • /
    • 제7권4호
    • /
    • pp.375-401
    • /
    • 2014
  • It is generally accepted that material heterogeneity has a great influence on the deformation, strength, damage and failure modes of rock. This paper presents numerical simulation on rock failure process based on the characterization of rock heterogeneity by using a digital image processing (DIP) technique. The actual heterogeneity of rock at mesoscopic scale (characterized as minerals) is retrieved by using a vectorization transformation method based on the digital image of rock surface, and it is imported into a well-established numerical code Rock Failure Process Analysis (RFPA), in order to examine the effect of rock heterogeneity on the rock failure process. In this regard, the numerical model of rock could be built based on the actual characterization of the heterogeneity of rock at the meso-scale. Then, the images of granite are taken as an example to illustrate the implementation of DIP technique in simulating the rock failure process. Three numerical examples are presented to demonstrate the impact of actual rock heterogeneity due to spatial distribution of constituent mineral grains (e.g., feldspar, quartz and mica) on the macro-scale mechanical response, and the associated rock failure mechanism at the meso-scale level is clarified. The numerical results indicate that the shape and distribution of constituent mineral grains have a pronounced impact on stress distribution and concentration, which may further control the failure process of granite. The proposed method provides an efficient tool for studying the mechanical behaviors of heterogeneous rock and rock-like materials whose failure processes are strongly influenced by material heterogeneity.

Diffusion-hydraulic properties of grouting geological rough fractures with power-law slurry

  • Mu, Wenqiang;Li, Lianchong;Liu, Xige;Zhang, Liaoyuan;Zhang, Zilin;Huang, Bo;Chen, Yong
    • Geomechanics and Engineering
    • /
    • 제21권4호
    • /
    • pp.357-369
    • /
    • 2020
  • Different from the conventional planar fracture and simplified Newton model, for power-law slurries with a lower water-cement ratio commonly used in grouting engineering, flow model in geological rough fractures is built based on ten standard profiles from Barton (1977) in this study. The numerical algorithm is validated by experimental results. The flow mechanism, grout superiority, and water plugging of pseudo plastic slurry are revealed. The representations of hydraulic grouting properties for JRCs are obtained. The results show that effective plugging is based on the mechanical mechanisms of the fluctuant structural surface and higher viscosity at the middle of the fissure. The formulas of grouting parameters are always variable with the roughness and shear movement, which play a key role in grouting. The roughness can only be neglected after reaching a threshold. Grouting pressure increases with increasing roughness and has variable responses for different apertures within standard profiles. The whole process can be divided into three stationary zones and three transition zones, and there is a mutation region (10 < JRCs < 14) in smaller geological fractures. The fitting equations of different JRCs are obtained of power-law models satisfying the condition of -2 < coefficient < 0. The effects of small apertures and moderate to larger roughness (JRCs > 10.8) on the permeability of surfaces cannot be underestimated. The determination of grouting parameters depends on the slurry groutability in terms of its weakest link with discontinuous streamlines. For grouting water plugging, the water-cement ratio, grouting pressure and grouting additives should be determined by combining the flow conditions and the apparent widths of the main fracture and rough surface. This study provides a calculation method of grouting parameters for variable cement-based slurries. And the findings can help for better understanding of fluid flow and diffusion in geological fractures.

An Ensemble Approach for Cyber Bullying Text messages and Images

  • Zarapala Sunitha Bai;Sreelatha Malempati
    • International Journal of Computer Science & Network Security
    • /
    • 제23권11호
    • /
    • pp.59-66
    • /
    • 2023
  • Text mining (TM) is most widely used to find patterns from various text documents. Cyber-bullying is the term that is used to abuse a person online or offline platform. Nowadays cyber-bullying becomes more dangerous to people who are using social networking sites (SNS). Cyber-bullying is of many types such as text messaging, morphed images, morphed videos, etc. It is a very difficult task to prevent this type of abuse of the person in online SNS. Finding accurate text mining patterns gives better results in detecting cyber-bullying on any platform. Cyber-bullying is developed with the online SNS to send defamatory statements or orally bully other persons or by using the online platform to abuse in front of SNS users. Deep Learning (DL) is one of the significant domains which are used to extract and learn the quality features dynamically from the low-level text inclusions. In this scenario, Convolutional neural networks (CNN) are used for training the text data, images, and videos. CNN is a very powerful approach to training on these types of data and achieved better text classification. In this paper, an Ensemble model is introduced with the integration of Term Frequency (TF)-Inverse document frequency (IDF) and Deep Neural Network (DNN) with advanced feature-extracting techniques to classify the bullying text, images, and videos. The proposed approach also focused on reducing the training time and memory usage which helps the classification improvement.

Effect of relative stiffness on seismic response of subway station buried in layered soft soil foundation

  • Min-Zhe Xu;Zhen-Dong Cui;Li Yuan
    • Geomechanics and Engineering
    • /
    • 제36권2호
    • /
    • pp.167-181
    • /
    • 2024
  • The soil-structure relative stiffness is a key factor affecting the seismic response of underground structures. It is of great significance to study the soil-structure relative stiffness for the soil-structure interaction and the seismic disaster reduction of subway stations. In this paper, the dynamic shear modulus ratio and damping ratio of an inhomogeneous soft soil site under different buried depths which were obtained by a one-dimensional equivalent linearization site response analysis were used as the input parameters in a 2D finite element model. A visco-elasto-plastic constitutive model based on the Mohr-Coulomb shear failure criterion combined with stiffness degradation was used to describe the plastic behavior of soil. The damage plasticity model was used to simulate the plastic behavior of concrete. The horizontal and vertical relative stiffness ratios of soil and structure were defined to study the influence of relative stiffness on the seismic response of subway stations in inhomogeneous soft soil. It is found that the compression damage to the middle columns of a subway station with a higher relative stiffness ratio is more serious while the tensile damage is slighter under the same earthquake motion. The relative stiffness has a significant influence on ground surface deformation, ground acceleration, and station structure deformation. However, the effect of the relative stiffness on the deformation of the bottom slab of the subway station is small. The research results can provide a reference for seismic fortification of subway stations in the soft soil area.