• Title/Summary/Keyword: deep machine learning

Search Result 1,080, Processing Time 0.03 seconds

Underwater Acoustic Research Trends with Machine Learning: General Background

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.147-154
    • /
    • 2020
  • Underwater acoustics that is the study of the phenomenon of underwater wave propagation and its interaction with boundaries, has mainly been applied to the fields of underwater communication, target detection, marine resources, marine environment, and underwater sound sources. Based on the scientific and engineering understanding of acoustic signals/data, recent studies combining traditional and data-driven machine learning methods have shown continuous progress. Machine learning, represented by deep learning, has shown unprecedented success in a variety of fields, owing to big data, graphical processor unit computing, and advances in algorithms. Although machine learning has not yet been implemented in every single field of underwater acoustics, it will be used more actively in the future in line with the ongoing development and overwhelming achievements of this method. To understand the research trends of machine learning applications in underwater acoustics, the general theoretical background of several related machine learning techniques is introduced in this paper.

Comparison of long-term forecasting performance of export growth rate using time series analysis models and machine learning analysis (시계열 분석 모형 및 머신 러닝 분석을 이용한 수출 증가율 장기예측 성능 비교)

  • Seong-Hwi Nam
    • Korea Trade Review
    • /
    • v.46 no.6
    • /
    • pp.191-209
    • /
    • 2021
  • In this paper, various time series analysis models and machine learning models are presented for long-term prediction of export growth rate, and the prediction performance is compared and reviewed by RMSE and MAE. Export growth rate is one of the major economic indicators to evaluate the economic status. And It is also used to predict economic forecast. The export growth rate may have a negative (-) value as well as a positive (+) value. Therefore, Instead of using the ReLU function, which is often used for time series prediction of deep learning models, the PReLU function, which can have a negative (-) value as an output value, was used as the activation function of deep learning models. The time series prediction performance of each model for three types of data was compared and reviewed. The forecast data of long-term prediction of export growth rate was deduced by three forecast methods such as a fixed forecast method, a recursive forecast method and a rolling forecast method. As a result of the forecast, the traditional time series analysis model, ARDL, showed excellent performance, but as the time period of learning data increases, the performance of machine learning models including LSTM was relatively improved.

A Study on the Evaluation of Concrete Unit-Water Content of FDR Sensor Using Deep Learning and Machine Learning (딥러닝과 머신러닝을 이용한 FDR 센서의 콘크리트 단위수량 평가에 관한 연구)

  • Lee, Seung-Yeop;Youn, Ji-Won;Wi, Gwang-Woo;Yang, Hyun-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.29-30
    • /
    • 2022
  • The unit-water content has a very significant effect on the durability of the construction structure and the quality of concrete. Although there are various methods for measuring the unit-water content, there are problems of time required for measurement, precision, and reproducibility. Recently, there is an FDR sensor capable of measuring moisture content in real time through an apparent dielectric constant change of electromagnetic waves. In addition, various artificial intelligence techniques that can non-linearly supplement the accuracy of FDR sensors are being studied. In this study, the accuracy of unit-water content measurement was compared and evaluated using machine learning and deep learning techniques after normalizing the data secured in concrete using frequency domain reflectometry (FDR) sensors used to measure soil moisture at home and abroad. The result of comparing the accuracy of machine learning and deep learning is judged to be excellent in the accuracy of deep learning, which can well express the nonlinear relationship between FDR sensor data and concrete unit-water content.

  • PDF

Predicting Session Conversion on E-commerce: A Deep Learning-based Multimodal Fusion Approach

  • Minsu Kim;Woosik Shin;SeongBeom Kim;Hee-Woong Kim
    • Asia pacific journal of information systems
    • /
    • v.33 no.3
    • /
    • pp.737-767
    • /
    • 2023
  • With the availability of big customer data and advances in machine learning techniques, the prediction of customer behavior at the session-level has attracted considerable attention from marketing practitioners and scholars. This study aims to predict customer purchase conversion at the session-level by employing customer profile, transaction, and clickstream data. For this purpose, we develop a multimodal deep learning fusion model with dynamic and static features (i.e., DS-fusion). Specifically, we base page views within focal visist and recency, frequency, monetary value, and clumpiness (RFMC) for dynamic and static features, respectively, to comprehensively capture customer characteristics for buying behaviors. Our model with deep learning architectures combines these features for conversion prediction. We validate the proposed model using real-world e-commerce data. The experimental results reveal that our model outperforms unimodal classifiers with each feature and the classical machine learning models with dynamic and static features, including random forest and logistic regression. In this regard, this study sheds light on the promise of the machine learning approach with the complementary method for different modalities in predicting customer behaviors.

Machine Learning Techniques for Diabetic Retinopathy Detection: A Review

  • Rachna Kumari;Sanjeev Kumar;Sunila Godara
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.67-76
    • /
    • 2024
  • Diabetic retinopathy is a threatening complication of diabetes, caused by damaged blood vessels of light sensitive areas of retina. DR leads to total or partial blindness if left untreated. DR does not give any symptoms at early stages so earlier detection of DR is a big challenge for proper treatment of diseases. With advancement of technology various computer-aided diagnostic programs using image processing and machine learning approaches are designed for early detection of DR so that proper treatment can be provided to the patients for preventing its harmful effects. Now a day machine learning techniques are widely applied for image processing. These techniques also provide amazing result in this field also. In this paper we discuss various machine learning and deep learning based techniques developed for automatic detection of Diabetic Retinopathy.

A Study on Area Detection Using Transfer-Learning Technique (Transfer-Learning 기법을 이용한 영역검출 기법에 관한 연구)

  • Shin, Kwang-seong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.178-179
    • /
    • 2018
  • Recently, methods of using machine learning in artificial intelligence such as autonomous navigation and speech recognition have been actively studied. Classical image processing methods such as classical boundary detection and pattern recognition have many limitations in order to recognize a specific object or area in a digital image. However, when a machine learning method such as deep-learning is used, Can be obtained. However, basically, a large amount of learning data must be secured for machine learning such as deep-learning. Therefore, it is difficult to apply the machine learning for area classification when the amount of data is very small, such as aerial photographs for environmental analysis. In this study, we apply a transfer-learning technique that can be used when the dataset size of the input image is small and the shape of the input image is not included in the category of the training dataset.

  • PDF

Application of transfer learning for streamflow prediction by using attention-based Informer algorithm

  • Fatemeh Ghobadi;Doosun Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.165-165
    • /
    • 2023
  • Streamflow prediction is a critical task in water resources management and essential for planning and decision-making purposes. However, the streamflow prediction is challenging due to the complexity and non-linear nature of hydrological processes. The transfer learning is a powerful technique that enables a model to transfer knowledge from a source domain to a target domain, improving model performance with limited data in the target domain. In this study, we apply the transfer learning using the Informer model, which is a state-of-the-art deep learning model for streamflow prediction. The model was trained on a large-scale hydrological dataset in the source basin and then fine-tuned using a smaller dataset available in the target basin to predict the streamflow in the target basin. The results demonstrate that transfer learning using the Informer model significantly outperforms the traditional machine learning models and even other deep learning models for streamflow prediction, especially when the target domain has limited data. Moreover, the results indicate the effectiveness of streamflow prediction when knowledge transfer is used to improve the generalizability of hydrologic models in data-sparse regions.

  • PDF

Machine- and Deep Learning Modelling Trends for Predicting Harmful Cyanobacterial Cells and Associated Metabolites Concentration in Inland Freshwaters: Comparison of Algorithms, Input Variables, and Learning Data Number (담수 유해남조 세포수·대사물질 농도 예측을 위한 머신러닝과 딥러닝 모델링 연구동향: 알고리즘, 입력변수 및 학습 데이터 수 비교)

  • Yongeun Park;Jin Hwi Kim;Hankyu Lee;Seohyun Byeon;Soon-Jin Hwang;Jae-Ki Shin
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.3
    • /
    • pp.268-279
    • /
    • 2023
  • Nowadays, artificial intelligence model approaches such as machine and deep learning have been widely used to predict variations of water quality in various freshwater bodies. In particular, many researchers have tried to predict the occurrence of cyanobacterial blooms in inland water, which pose a threat to human health and aquatic ecosystems. Therefore, the objective of this study were to: 1) review studies on the application of machine learning models for predicting the occurrence of cyanobacterial blooms and its metabolites and 2) prospect for future study on the prediction of cyanobacteria by machine learning models including deep learning. In this study, a systematic literature search and review were conducted using SCOPUS, which is Elsevier's abstract and citation database. The key results showed that deep learning models were usually used to predict cyanobacterial cells, while machine learning models focused on predicting cyanobacterial metabolites such as concentrations of microcystin, geosmin, and 2-methylisoborneol (2-MIB) in reservoirs. There was a distinct difference in the use of input variables to predict cyanobacterial cells and metabolites. The application of deep learning models through the construction of big data may be encouraged to build accurate models to predict cyanobacterial metabolites.

Analysis of the Status of Natural Language Processing Technology Based on Deep Learning (딥러닝 중심의 자연어 처리 기술 현황 분석)

  • Park, Sang-Un
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.63-81
    • /
    • 2021
  • The performance of natural language processing is rapidly improving due to the recent development and application of machine learning and deep learning technologies, and as a result, the field of application is expanding. In particular, as the demand for analysis on unstructured text data increases, interest in NLP(Natural Language Processing) is also increasing. However, due to the complexity and difficulty of the natural language preprocessing process and machine learning and deep learning theories, there are still high barriers to the use of natural language processing. In this paper, for an overall understanding of NLP, by examining the main fields of NLP that are currently being actively researched and the current state of major technologies centered on machine learning and deep learning, We want to provide a foundation to understand and utilize NLP more easily. Therefore, we investigated the change of NLP in AI(artificial intelligence) through the changes of the taxonomy of AI technology. The main areas of NLP which consists of language model, text classification, text generation, document summarization, question answering and machine translation were explained with state of the art deep learning models. In addition, major deep learning models utilized in NLP were explained, and data sets and evaluation measures for performance evaluation were summarized. We hope researchers who want to utilize NLP for various purposes in their field be able to understand the overall technical status and the main technologies of NLP through this paper.

Medical Image Analysis Using Artificial Intelligence

  • Yoon, Hyun Jin;Jeong, Young Jin;Kang, Hyun;Jeong, Ji Eun;Kang, Do-Young
    • Progress in Medical Physics
    • /
    • v.30 no.2
    • /
    • pp.49-58
    • /
    • 2019
  • Purpose: Automated analytical systems have begun to emerge as a database system that enables the scanning of medical images to be performed on computers and the construction of big data. Deep-learning artificial intelligence (AI) architectures have been developed and applied to medical images, making high-precision diagnosis possible. Materials and Methods: For diagnosis, the medical images need to be labeled and standardized. After pre-processing the data and entering them into the deep-learning architecture, the final diagnosis results can be obtained quickly and accurately. To solve the problem of overfitting because of an insufficient amount of labeled data, data augmentation is performed through rotation, using left and right flips to artificially increase the amount of data. Because various deep-learning architectures have been developed and publicized over the past few years, the results of the diagnosis can be obtained by entering a medical image. Results: Classification and regression are performed by a supervised machine-learning method and clustering and generation are performed by an unsupervised machine-learning method. When the convolutional neural network (CNN) method is applied to the deep-learning layer, feature extraction can be used to classify diseases very efficiently and thus to diagnose various diseases. Conclusions: AI, using a deep-learning architecture, has expertise in medical image analysis of the nerves, retina, lungs, digital pathology, breast, heart, abdomen, and musculo-skeletal system.