Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No. 2022R1F1A1073133).
References
- Baumann, A., Haupt, J., Gebert, F., and Lessmann, S. (2018). Changing perspectives: Using graph metrics to predict purchase probabilities. Expert Systems with Applications, 94, 137-148. https://doi.org/10.1016/j.eswa.2017.10.046
- Baumann, A., Haupt, J., Gebert, F., and Lessmann, S. (2019). The price of privacy. Business & Information Systems Engineering, 61(4), 413-431. https://doi.org/10.1007/s12599-018-0528-2
- Bigon, L., Cassani, G., Greco, C., Lacasa, L., Pavoni, M., Polonioli, A., and Tagliabue, J. (2019). Prediction is very hard, especially about conversion. Predicting user purchases from clickstream data in fashion e-commerce. arXiv preprint arXiv:1907.00400.
- Bogina, V., and Kuflik, T. (2017). Incorporating dwell time in session-based recommendations with recurrent neural networks. In CEUR Workshop Proceedings, (Vol. 1922 pp. 57-59).
- Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145-1159. https://doi.org/10.1016/S0031-3203(96)00142-2
- Bucklin, R. E., and Sismeiro, C. (2003). A model of web site browsing behavior estimated on clickstream data. Journal of Marketing Research, 40(3), 249-267. https://doi.org/10.1509/jmkr.40.3.249.19241
- Bucklin, R. E., and Sismeiro, C. (2009). Click here for internet insight: Advances in clickstream data analysis in marketing. Journal of Interactive Marketing, 23(1), 35-48. https://doi.org/10.1016/j.intmar.2008.10.004
- Chaudhuri, N., Gupta, G., Vamsi, V., and Bose, I. (2021). On the platform but will they buy? Predicting customers' purchase behavior using deep learning. Decision Support Systems, 149, 113622. https://doi.org/10.1016/j.dss.2021.113622
- Chen, D., Sain, S. L., and Guo, K. (2012). Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining. Journal of Database Marketing & Customer Strategy Management, 19(3), 197-208. https://doi.org/10.1057/dbm.2012.17
- Choi, H., Kim, D., Kim, J., Kim, J., and Kang, P. (2022). Explainable anomaly detection framework for predictive maintenance in manufacturing systems. Applied Soft Computing, 125, 109147.
- Digital Commerce 360. (2021). US ecommerce grows 44.0% in 2020. Retrieved from https://www.digitalcommerce360.com/article/us-ecommerce-sales/#:~text=Online%20spending%20represented%2021.3%25%20of,to%20Digital%20Commerce%20360%20estimates.&text=Online's%20share%20of%20total%20retail,2019%20and%2014.3%25%20in%202018
- Dong, Y., Gao, S., Tao, K., Liu, J., and Wang, H. (2014). Performance evaluation of early and late fusion methods for generic semantics indexing. Pattern Analysis and Applications, 17(1), 37-50. https://doi.org/10.1007/s10044-013-0336-8
- Esmeli, R., Bader-El-Den, M., and Abdullahi, H. (2022). An analyses of the effect of using contextual and loyalty features on early purchase prediction of shoppers in e-commerce domain. Journal of Business Research, 147, 420-434. https://doi.org/10.1016/j.jbusres.2022.04.012
- Fader, P. S., Hardie, B. G., and Lee, K. L. (2005). RFM and CLV: Using iso-value curves for customer base analysis. Journal of Marketing Research, 42(4), 415-430. https://doi.org/10.1509/jmkr.2005.42.4.415
- Gao, J., Li, P., Chen, Z., and Zhang, J. (2020). A survey on deep learning for multimodal data fusion. Neural Comput, 32(5), 829-864. https://doi.org/10.1162/neco_a_01273
- Glodek, M., Reuter, S., Schels, M., Dietmayer, K., and Schwenker, F. (2013). Kalman filter based classifier fusion for affective state recognition. In Z. H. Zhou, F. Roli, and J. Kittler (Eds.), Multiple Classifier Systems. Berlin, Heidelberg.
- Graves, A., and Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18(5), 602-610. https://doi.org/10.1016/j.neunet.2005.06.042
- Han, W., Xue, J., Wang, Y., Huang, L., Kong, Z., and Mao, L. (2019). MalDAE: Detecting and explaining malware based on correlation and fusion of static and dynamic characteristics. Computers & Security, 83, 208-233. https://doi.org/10.1016/j.cose.2019.02.007
- He, H., and Ma, Y. (2013). Imbalanced Learning: Foundations, Algorithms, and Applications. Wiley-IEEE Press.
- Herhausen, D., Miocevic, D., Morgan, R. E., and Kleijnen, M. H. P. (2020). The digital marketing capabilities gap. Industrial Marketing Management, 90, 276-290. https://doi.org/10.1016/j.indmarman.2020.07.022
- Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Hu, D., Wang, C., Nie, F., and Li, X. (2019). Dense multimodal fusion for hierarchically joint representation. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton, UK.
- Iwanaga, J., Nishimura, N., Sukegawa, N., and Takano, Y. (2016). Estimating product-choice probabilities from recency and frequency of page views. Knowledge-Based Systems, 99, 157-167. https://doi.org/10.1016/j.knosys.2016.02.006
- Jamal, Z., and Bucklin, R. E. (2006). Improving the diagnosis and prediction of customer churn: A heterogeneous hazard modeling approach. Journal of Interactive Marketing, 20(3-4), 16-29. https://doi.org/10.1002/dir.20064
- Kim, E. Y., and Kim, Y. K. (2004). Predicting online purchase intentions for clothing products. European Journal of Marketing, 38(7), 883-897. https://doi.org/10.1108/03090560410539302
- Koehn, D., Lessmann, S., and Schaal, M. (2020). Predicting online shopping behaviour from clickstream data using deep learning. Expert Systems with Applications, 150, 113342. https://doi.org/10.1016/j.eswa.2020.113342
- Lariviere, B., and Van den Poel, D. (2005). Predicting customer retention and profitability by using random forests and regression forests techniques. Expert Systems with Applications, 29(2), 472-484. https://doi.org/10.1016/j.eswa.2005.04.043
- Law, M., and Ng, M. (2016). Age and gender differences: Understanding mature online users with the online purchase intention model. Journal of Global Scholars of Marketing Science, 26(3), 248-269. https://doi.org/10.1080/21639159.2016.1174540
- Lee, S., and Choeh, J. Y. (2014). Predicting the helpfulness of online reviews using multilayer perceptron neural networks. Expert Systems with Applications, 41(6), 3041-3046. https://doi.org/10.1016/j.eswa.2013.10.034
- Ling, C. X., and Li, C. (1998). Data mining for direct marketing: problems and solutions. In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining. New York, NY.
- Liu, A., Tan, Z., Li, X., Wan, J., Escalera, S., Guo, G., and Li, S. Z. (2019). Static and dynamic fusion for multi-modal cross-ethnicity face anti-spoofing. arXiv preprint arXiv:1912.02340.
- Lu, L., Dunham, M., and Meng, Y. (2005). Mining significant usage patterns from clickstream data. In International Workshop on Knowledge Discovery on the Web. Berlin, Heidelberg.
- Moe, W. W., and Fader, P. S. (2004). Dynamic Conversion Behavior at E-Commerce Sites. Management Science, 50(3), 326-335. https://doi.org/10.1287/mnsc.1040.0153
- Mokryn, O., Bogina, V., and Kuflik, T. (2019). Will this session end with a purchase? Inferring current purchase intent of anonymous visitors. Electronic Commerce Research and Applications, 34, 100836. https://doi.org/10.1016/j.elerap.2019.100836
- Moro, S., Cortez, P., and Rita, P. (2015). Using customer lifetime value and neural networks to improve the prediction of bank deposit subscription in telemarketing campaigns. Neural Computing and Applications, 26(1), 131-139. https://doi.org/10.1007/s00521-014-1703-0
- Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., and Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1. https://doi.org/10.1186/s40537-014-0007-7
- Ndubisi, N. O. (2006). Effect of gender on customer loyalty: A relationship marketing approach. Marketing Intelligence & Planning, 24(1), 48-61. https://doi.org/10.1108/02634500610641552
- Ogonowski, P. (2021). Ecommerce Conversion Rate Statistics. Retrieved from https://www.growcode.com/blog/ecommerce-conversion-rate
- Park, C. H., and Park, Y.-H. (2016). Investigating purchase conversion by uncovering online visit patterns. Marketing Science, 35(6), 894-914. https://doi.org/10.1287/mksc.2016.0990
- Poria, S., Cambria, E., Bajpai, R., and Hussain, A. (2017). A review of affective computing: From unimodal analysis to multimodal fusion. Information Fusion, 37, 98-125. https://doi.org/10.1016/j.inffus.2017.02.003
- Poria, S., Cambria, E., and Gelbukh, A. (2015). Deep convolutional neural network textual features and multiple kernel learning for utterance-level multimodal sentiment analysis. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal.
- Rahim, M. A., Mushafiq, M., Khan, S., and Arain, Z. A. (2021). RFM-based repurchase behavior for customer classification and segmentation. Journal of Retailing and Consumer Services, 61, 102566. https://doi.org/10.1016/j.jretconser.2021.102566
- Rastgoo, M. N., Nakisa, B., Maire, F., Rakotonirainy, A., and Chandran, V. (2019). Automatic driver stress level classification using multimodal deep learning. Expert Systems with Applications, 138, 112793. https://doi.org/10.1016/j.eswa.2019.07.010
- Rust, R. T. (2020). The future of marketing. International Journal of Research in Marketing, 37(1), 15-26. https://doi.org/10.1016/j.ijresmar.2019.08.002
- Saide, C., Lengelle, R., Honeine, P., Richard, C., and Achkar, R. (2015). Nonlinear adaptive filtering using kernel-based algorithms with dictionary adaptation [10.1002/acs.2548]. International Journal of Adaptive Control and Signal Processing, 29(11), 1391-1410. https://doi.org/10.1002/acs.2548
- Schuster, M., and Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681. https://doi.org/10.1109/78.650093
- Sheil, H., Rana, O., and Reilly, R. (2018). Predicting purchasing intent: Automatic feature learning using recurrent neural networks. arXiv preprint arXiv:1807.08207.
- Siami-Namini, S., Tavakoli, N., and Namin, A. S. (2019, 9-12 Dec. 2019). The Performance of LSTM and BiLSTM in Forecasting Time Series. In 2019 IEEE International Conference on Big Data (Big Data). https://doi.org/10.1109/BigData47090.2019.9005997
- Sorce, P., Perotti, V., and Widrick, S. (2005). Attitude and age differences in online buying. International Journal of Retail & Distribution Management, 33(2), 122-132. https://doi.org/10.1108/09590550510581458
- Sun, C., Adamopoulos, P., Ghose, A., and Luo, X. (2022). Predicting stages in omnichannel path to purchase: A deep learning model. Information Systems Research, 33(2), 429-445. https://doi.org/10.1287/isre.2021.1071
- Toth, A., Tan, L., Di Fabbrizio, G., and Datta, A. (2017). Predicting shopping behavior with mixture of RNNs. In Proceedings of SIGIR 2017 eCom. Tokyo, Japan.
- Van den Poel, D., and Buckinx, W. (2005). Predicting online-purchasing behaviour. European Journal of Operational Research, 166(2), 557-575. https://doi.org/10.1016/j.ejor.2004.04.022
- VanderMeer, D., Dutta, K., Datta, A., Ramamritham, K., and Navanthe, S. B. (2000). Enabling scalable online personalization on the web. In Proceedings of the 2nd ACM conference on Electronic commerce. New York, NY.
- Wagner, G., Schramm-Klein, H., and Steinmann, S. (2020). Online retailing across e-channels and e-channel touchpoints: Empirical studies of consumer behavior in the multichannel e-commerce environment. Journal of Business Research, 107, 256-270. https://doi.org/10.1016/j.jbusres.2018.10.048
- Wang, L., Ning, H., Tan, T., and Hu, W. (2004). Fusion of static and dynamic body biometrics for gait recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14(2), 149-158. https://doi.org/10.1109/TCSVT.2003.821972
- Wang, Y., and Xu, W. (2018). Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud. Decision Support Systems, 105, 87-95. https://doi.org/10.1016/j.dss.2017.11.001
- Wei, J. T., Lin, S. Y., and Wu, H. H. (2010). A review of the application of RFM model. African Journal of Business Management, 4(19), 4199-4206. https://doi.org/10.5897/AJBM.9000026
- Wu, Z., Tan, B. H., Duan, R., Liu, Y., and Mong Goh, R. S. (2015). Neural modeling of buying behaviour for e-commerce from clicking patterns. In Proceedings of the 2015 International ACM Recommender Systems Challenge (pp. 1-4). https://doi.org/10.1145/2813448.2813521
- Yang, M., and Wang, J. (2022). Adaptability of financial time series prediction based on BiLSTM. In Procedia Computer Science, 199, 18-25. https://doi.org/10.1016/j.procs.2022.01.003
- Yeo, J., Hwang, S. W., S, K., Koh, E., and Lipka, N. (2020). Conversion Prediction from Clickstream: Modeling Market Prediction and Customer Predictability. IEEE Transactions on Knowledge and Data Engineering, 32(2), 246-259. https://doi.org/10.1109/TKDE.2018.2884467
- Yuan, H., Zheng, J., Ye, Q., Qian, Y., and Zhang, Y. (2021). Improving fake news detection with domain-adversarial and graph-attention neural network. Decision Support Systems, 113633. https://doi.org/10.1016/j.dss.2021.113633
- Zhang, K., Geng, Y., Zhao, J., Liu, J., and Li, W. (2020a). Sentiment Analysis of Social Media via Multimodal Feature Fusion. Symmetry, 12(12). https://doi.org/10.3390/sym12122010
- Zhang, W., Yu, J., Hu, H., Hu, H., and Qin, Z. (2020b). Multimodal feature fusion by relational reasoning and attention for visual question answering. Information Fusion, 55, 116-126. https://doi.org/10.1016/j.inffus.2019.08.009
- Zhang, Y., Bradlow, E. T., and Small, D. S. (2013). New measures of clumpiness for incidence data. Journal of Applied Statistics, 40(11), 2533-2548. https://doi.org/10.1080/02664763.2013.818627
- Zhang, Y., Bradlow, E. T., and Small, D. S. (2015). Predicting customer value using clumpiness: From RFM to RFMC. Marketing Science, 34(2), 195-208. https://doi.org/10.1287/mksc.2014.0873
- Zhu, G., Wu, Z., Wang, Y., Cao, S., and Cao, J. (2019). Online purchase decisions for tourism e-commerce. Electronic Commerce Research and Applications, 38, 100887. https://doi.org/10.1016/j.elerap.2019.100887